The numerical investigation of colliding optical solitons as an all-optical-gate using the method of Lines

  • Waldemar SpillerEmail author
  • Stefan F. Helfert
  • Jürgen Jahns
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling


The bidirectional propagation and collision of counter-propagating optical solitons in a two-level resonant medium is analyzed. For sufficiently short duration of the pulses and sufficiently high power levels, self-induced transparency allows the pulses to propagate without losses at anomalously low velocities. Here, we use an extended semiclassical approach, called Maxwell–Bloch model. The quantization of the electromagnetic field is neglected, however, a full quantum mechanical formulation is used to describe the behavior of the matter. The numerical simulations are performed by using the method of lines. For improved accuracy, spline interpolation of the fields is introduced. Results are presented to demonstrate the use of soliton collision for all-optical switching, in particular, as OR- and XOR-gates.


Maxwell–Bloch Model Self-induced transparency Optical solitons All-optical switching Method of lines 



The analysis presented here was based on earlier work by Hutzler (2014). The advice by Klaus Boller (University of Twente) in this context is greatly appreciated. Furthermore, we thank Marina Haase and Nikolas Henry for reading the manuscript.


  1. Afanasev, A., Volkov, V., Dritz, V., Samson, B.: Interaction of counterpropagating self-induced transparency solitons. J. Mod. Opt. 37, 165–170 (1990)ADSCrossRefGoogle Scholar
  2. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, Boston (2007)zbMATHGoogle Scholar
  3. Alcock, C.B., Itkin, V.P., Horrigan, M.K.: Vapor pressure equations for the metallic elements: 298–2500 K. Can. Metall. Q. 23, 309–313 (1984)CrossRefGoogle Scholar
  4. Beeker, W., Lee, C., Can, E., Boller, K.: Storage by trapping and spatial staggering of multiple interacting solitons in \(\varLambda\)-type media. Phys. Rev. Lett. A 82, 053839 (2010)ADSCrossRefGoogle Scholar
  5. Curtiss, C.F., Hirschfelder, J.O.: Integration of Stiff equations. Proc. Nat. Acad. Sci. U.S.A. 38, 235–243 (1952)ADSMathSciNetCrossRefGoogle Scholar
  6. Frantzeskakis, D.J., Leblond, H., Mihalache, D.: Nonlinear optics of intense few-cycle pulses: an overview of recent theoretical and experimental developments. Rom. J. Phys. 59 (no.7–8), 767–784 (2014)Google Scholar
  7. Hamdi, S., Schiesser, W.E., Griffiths, G.W.: Method of lines. Scholarpedia 2(7), 2859 (2007). ADSCrossRefGoogle Scholar
  8. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. Dover, New York (1987)zbMATHGoogle Scholar
  9. Hutzler, M.: Collisions of optical solitons in two-level media. M.Sc. Thesis, FernUniversität in Hagen (2014)Google Scholar
  10. Islam, M., Soccolich, C., Gordon, J.: Ultrafast digital soliton logic gates. Opt. Quantum Electron. 24, 1215–1235 (1992)CrossRefGoogle Scholar
  11. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 82nd edn. CRC Press, Boca Raton (2001)Google Scholar
  12. Malomed, B., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, 53–72 (2005)ADSCrossRefGoogle Scholar
  13. McCall, S.L., Hahn, E.: Self-induced transparency. Phys. Rev. Lett. 183, 457–489 (1969)ADSGoogle Scholar
  14. Miller, D.A.B.: Quantum Mechanics for Scientists and Engineers. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  15. Milonni, W., Eberly, J.: Laser Physics, Chap. 9, Coherence in Atom-Field Interactions. Wiley, New York (2010)Google Scholar
  16. Mohr, P.J., Taylor, B.N., Newell, D.B.: The 2006 CODATA Recommended Values of the Fundamental Physical Constants, Web Version 5.1. available at (National Institute of Standards and Technology, Gaithersburg, MD 20899, 31 December 2007 (2007). Accessed 1 Aug 2018
  17. Novitsky, D.: Femtosecond pulses in a dense two-level medium: spectral transformations, transient processes, and collisional dynamics. Phys. Rev. Lett. A 84, 013817 (2011)ADSCrossRefGoogle Scholar
  18. Novitsky, D.: Controlled absorption and all-optical diode action due to collisions of self-induced-transparency solitons. Phys. Rev. Lett. A 85, 043813 (2012)ADSCrossRefGoogle Scholar
  19. Novitsky, D.: Ultrashort pulses in an inhomogeneously broadened two-level medium: soliton formation and inelastic collisions. J. Phys. B Atomic Mol. Opt. Phys. 47, 095401 (2014)ADSCrossRefGoogle Scholar
  20. Pregla, R.: Analysis of Electromagnetic Fields and Waves—The Method of Lines. Wiley, Chichester (2008)CrossRefGoogle Scholar
  21. Pusch, A., Hamm, J.M., Hess, O.: Controllable interaction of counterpropagating solitons in three-level media. Phys. Rev. A 82, 023805 (2010)ADSCrossRefGoogle Scholar
  22. Saleh, B., Teich, M.: Fundamentals of Photonics. Wiley, New York (2007)Google Scholar
  23. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  24. Shaw, M., Shore, B.: Collisions of counterpropagating optical solitons. J. Opt. Soc. Am. B 8, 1127–1134 (1991)ADSCrossRefGoogle Scholar
  25. Slusher, R., Gibbs, H.: Self-induced transparency in atomic rubidium. Phys. Rev. A 5, 1634–1659 (1972)ADSCrossRefGoogle Scholar
  26. Steck, D.: Rubidium 87 D Line Data., vol. revision 2.0.1 (2008)
  27. Valcarcel, G., Roldan, E.: Semiclassical theory of amplification and lasing. Revista Mexicana de Fisica E 52, 198–214 (2006)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Micro- and NanophotonicsFernUniversität in HagenHagenGermany

Personalised recommendations