Characterization of terbium containing cubic zirconia crystal for high power laser applications

  • Evgeniy A. MironovEmail author
  • Oleg V. Palashov


A magneto-active terbium containing cubic zirconia crystal is an attractive material for creating Faraday isolators thanks to a high value of its Verdet constant and low absorption coefficient. The optical anisotropy parameter of this crystal which shows the distribution of orientations of the axes of thermally induced birefringence in a thermally loaded optical element has negative value. It means that there exists a dedicated orientation of crystallographic axes, at which the axes of thermally induced birefringence are arranged in the one direction and thermally induced depolarization may be reduced substantially. For assessing potential of this crystal for high-power applications we have investigated its temperature dependence of the Verdet constant that proved to correspond to the paramagnetic behavior. Thermo-optical characteristics are also of principal importance when operating with high-power laser radiation. We present results of measurements of thermo-optical characteristics Q and P which determines values of polarization and phase distortions of passing laser radiation. Measured values can be used to determine the characteristics of Faraday isolators based terbium containing cubic zirconia crystals in various implementations of their optical schemes for various parameters of laser radiation.


Magneto-active materials Thermal effects Birefringence Depolarization 



The theoretical research of this work was supported by the Russian Science Foundation (project No. 18-12-00416) the experimental part was supported by the Russian Foundation for Basic Research (project No. 18-32-00155).


  1. Joiner, R.E., Marburger, J., Steier, W.H.: Elimination of stress-induced birefringence effects in single-crystal high-power laser windows. Appl. Phys. Lett. 30, 485–486 (1977)ADSCrossRefGoogle Scholar
  2. Khazanov, E.A., Kulagin, O.V., Yoshida, S., Tanner, D.B., Reitze, D.H.: Investigation of self-induced depolarization of laser radiation in terbium gallium garnet. IEEE J. Quantum Electron. 35, 1116–1122 (1999)ADSCrossRefGoogle Scholar
  3. Khazanov, E.A., Andreev, N.F., Mal’shakov, A.N., Palashov, O.V., Poteomkin, A.K., Sergeev, A.M., Shaykin, A.A., Zelenogorsky, V.V., Ivanov, I., Amin, R.S., Mueller, G., Tanner, D.B., Reitze, D.H.: Compensation of thermally induced modal distortions in Faraday isolators. IEEE J. Quantum Electron. 40, 1500–1510 (2004)ADSCrossRefGoogle Scholar
  4. Koechner, W., Rice, D.K.: Birefringence of YAG: Nd laser rods as a function of growth direction. J. Opt. Soc. Am. 61, 758–766 (1971)ADSCrossRefGoogle Scholar
  5. Mironov, E.A., Snetkov, I.L., Voitovich, A.V., Palashov, O.V.: Permanent-magnet Faraday isolator with the field intensity of 25 kOe. Quantum Electron. 43, 740–743 (2013)ADSCrossRefGoogle Scholar
  6. Mironov, E.A., Palashov, O.V.: Faraday isolator based on TSAG crystal for high power lasers. Opt. Express 22, 23226–23230 (2014)ADSCrossRefGoogle Scholar
  7. Mironov, E.A., Palashov, O.V., Voitovich, A.V., Karimov, D.N., Ivanov, I.A.: Investigation of thermo-optical characteristics of magneto-active crystal Na0.37Tb0.63F2.26. Opt. Lett. 40, 4919–4922 (2015)ADSCrossRefGoogle Scholar
  8. Mironov, E.A., Vyatkin, A.V., Palashov, O.V.: Measurements of thermo-optical characteristics of cubic crystals using samples of arbitrary orientation. IEEE J. Quantum Electron. 53, 7000607 (2017)Google Scholar
  9. Mironov, E.A., Palashov, O.V.: Spectral, magneto-optical and thermo-optical properties of terbium containing cubic zirconia crystal. Appl. Phys. Lett. 113, 063504 (2018)Google Scholar
  10. Snetkov, I., Vyatkin, A., Palashov, O., Khazanov, E.: Drastic reduction of thermally induced depolarization in CaF2 crystals with [111] orientation. Opt. Express 20, 13357–13367 (2012)ADSCrossRefGoogle Scholar
  11. Snetkov, I.L., Silin, D.E., Palashov, O.V., Khazanov, E.A., Yagi, H., Yanagitani, T., Yoneda, H., Shirakawa, A., Ueda, K.-I., Kaminskii, A.A.: Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials. Opt. Express 21, 21254–21263 (2013)ADSCrossRefGoogle Scholar
  12. Snetkov, I.L., Yasuhara, R., Starobor, A.V., Mironov, E.A., Palashov, O.V.: Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals. IEEE J. Quantum Electron. 51, 7000307 (2015)Google Scholar
  13. Snetkov, I.L., Various methods of compensation of thermally induced distortions of radiation in optical elements of lasers, Ph.D. Thesis (Institute of Applied Physics of the Russian Academy of Sciences, 2015)Google Scholar
  14. Snetkov, I.: Features of thermally induced depolarization in magneto-active media with negative optical anisotropy parameter. IEEE J. Quantum Electron. 54, 7000108 (2018)Google Scholar
  15. Volkov, M.R., Kuznetsov, I.I., Mukhin, I.B.: A new method of diagnostics of the quality of heavily Yb-doped laser media. IEEE J. Quantum Electron. 54, 1700106 (2018)Google Scholar
  16. Yasuhara, R., Snetkov, I., Starobor, A., Mironov, E., Palashov, O.: Faraday rotator based on TSAG crystal with < 001 > orientation. Opt. Express 24, 15486–15493 (2016)ADSCrossRefGoogle Scholar
  17. Zheleznov, D.S., Starobor, A.V., Palashov, O.V., Khazanov, E.A.: Cryogenic Faraday isolator with a disk-shaped magneto-optical element. J. Opt. Soc. Am. B 29, 786–792 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations