Generation of inhomogeneously polarized vector vortex modes in few mode optical fiber

  • C. Hari Krishna
  • Sourabh RoyEmail author


We have demonstrated the generation of inhomogeneously polarized vector-vortex modes in a step index, few mode fiber other than well-known zeroth order vector modes such as radial, azimuthal and hybridly polarized modes. These vector-vortex modes are generated by the combination of orthogonal linearly polarized fiber modes with diagonal and anti-diagonal polarization vector. The generation of these modes is controlled by the coupling conditions and state of polarization at the input fiber end. A single half-wave plate is used at the input end to switch between modes of orthogonal polarization for both linearly polarized modes and inhomogeneously polarized vector-vortex modes. All the generated modes are analysed using Stokes formalism by obtaining spatial polarization maps and ellipse orientation maps. The obtained experimental results are found to be in good agreement with the simulated results.


Few-mode optical fiber Vector-vortex modes Polarization Stokes analysis 



Authors are thankful to Prof. E. J. Galvez of Colgate University and Dr. Vijay Kumar for help in Matlab coding. Thanks are due to Dr. Onkar Nath Verma and Dr. P. Kishore for constructive comments on the manuscript. One of the author (CHK) acknowledges Ministry of Human Resource and Development (MHRD), Govt. of India for research fellowship.


  1. Barthelemy, A., Arnaud, J.: Polarization states in twisted optical fibers. Opt. Qauantum Electron. 14, 371–374 (1982)CrossRefGoogle Scholar
  2. Borghi, R., Santarsiero, M., Alonso, M.A.: Highly focused spirally polarized beams. J. Opt. Soc. Am. A 22, 1420–1431 (2005)ADSCrossRefGoogle Scholar
  3. Bouhelier, A., Beversluis, M., Hartschuh, A., Novotny, L.: Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)ADSCrossRefGoogle Scholar
  4. Chaudhuri, P.R., Roy, S.: Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm. Opt. Quantum Electron. 39, 221–237 (2007)CrossRefGoogle Scholar
  5. Chen, R., Agarwal, K., Sheppard, Colin J.R., Chen, X.: Imaging using cylindrical vector beams in a high numerical-aperture microscopy system. Opt. Lett. 38, 3111–3114 (2013)ADSCrossRefGoogle Scholar
  6. Curtis, J.E., Grier, D.G.: Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003)ADSCrossRefGoogle Scholar
  7. Dennis, H.: Goldstein, Polarized Light, 3rd edn. CRC Press, London (2011)Google Scholar
  8. Dholakia, K., Simpson, N.B., Padgett, M.J., Allen, L.: Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742–R3745 (1996)ADSCrossRefGoogle Scholar
  9. Donato, M.G., Vasi, S., Sayed, R., Jones, P.H., Bonaccorso, F., Ferrari, A.C., Gucciardi, P.G., Marago, O.M.: Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 37, 3381–3383 (2012)ADSCrossRefGoogle Scholar
  10. Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)ADSCrossRefGoogle Scholar
  11. Eftimov, T.A.: Resultant mode pattern and polarization in a LP01, LP02 two mode linearly birefringent optical fiber. Opt. Quantum Electron. 23, 1143–1160 (1991)CrossRefGoogle Scholar
  12. Felsen, L.B.: Rays, modes and beams in optical fiber waveguides. Opt. Quantum. Electron. 9, 189–195 (1977)ADSCrossRefGoogle Scholar
  13. Galvez, E.J., Rojec, B.L., Kumar, V., Viswanathan, N.K.: Generation of isolated asymmetric umbilics in light’s polarization. Phys. Rev. A 89, 031801(R) (2014)ADSCrossRefGoogle Scholar
  14. Gloge, D.: Weakly guiding fibres. Appl. Opt. 10, 2252–2258 (1971)ADSCrossRefGoogle Scholar
  15. Grosjean, T., Courjon, D., Spajer, M.: An all-fiber device for generating radially and other polarized light beams. Opt. Commun. 203, 1–5 (2002)ADSCrossRefGoogle Scholar
  16. Inavalli, V.V.G.K., Viswanathan, N.K.: Switchable vector vortex beam generation using an optical fiber. Opt. Commun. 283, 861–864 (2010)ADSCrossRefGoogle Scholar
  17. Inavalli, V.V.G.K., Viswanathan, N.K.: Rotational Doppler-effect due to selective excitation of vector-vortex field in optical fiber. Opt. Exp. 19, 448–457 (2011)ADSCrossRefGoogle Scholar
  18. Jones, J.A., D’Addario, A.J., Rojec, B.L., Milione, G., Galvez, E.J.: The Poincare-sphere approach to polarization: formalism and new labs with Poincare beams. Am. J. Phys. 84, 822–835 (2016)ADSCrossRefGoogle Scholar
  19. Kimura, W.D., Kim, G.H., Romea, R.D., et al.: Laser acceleration of relativistic electrons using the inverse Cherenkov effect. Phys. Rev. Lett. 74, 546–549 (1995)ADSCrossRefGoogle Scholar
  20. Li, X., Lan, T.H., Tien, C.H., Gu, M.: Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012)CrossRefGoogle Scholar
  21. Meier, M., Romano, V., Feurer, T.: Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 86, 329–334 (2007)ADSCrossRefGoogle Scholar
  22. Milione, G., Nguyen, T.A., Karimi, E., Nolan, D.A., Slussarenko, S., Marrucci, L., Alfano, R.: Superdense coding with vector vortex beams: a classical analogy of entanglement, OSA publishing, Front. Opt. FM3F.4 (2013)Google Scholar
  23. Milione, G., Sztul, H.I., Nolan, D.A., Alfano, R.R.: Higher-order poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 1–4 (2011)CrossRefGoogle Scholar
  24. Milione, G., Evans, S., Nolan, D.A., Alfano, R.R.: Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012)ADSCrossRefGoogle Scholar
  25. Niv, A., Biener, G., Kleiner, V., Hasman, E.: Rotating vectorial vortices produced by space-variant subwavelength gratings. Opt. Lett. 30, 2933–2935 (2005)ADSCrossRefGoogle Scholar
  26. Pidishety, S., Srinivasan, B., Brambilla, G.: All-fiber fused coupler for stable generation of radially and azimuthally polarized beams. IEEE Photon. Technol. Lett. 29, 31–34 (2016)ADSCrossRefGoogle Scholar
  27. Ren, Z.-C., Kong, L.-J., Li, S.-M., Qian, S.-X., Li, Y., Tu, C., Wang, H.-T.: Generalized Poincaré sphere. Opt. Exp. 23, 26586–26595 (2015)ADSCrossRefGoogle Scholar
  28. Ribeiro, R.S.R., Dahal, P., Guerreiro, A., Jorge, P., Viegas, J.: Optical fibers as beam shapers: from Gaussian beams to optical vortices. Opt. Lett. 41, 2137–2140 (2016)ADSCrossRefGoogle Scholar
  29. Sharma, A.: Constructing linear combinations of LP modes to obtain zeroth order vector modes of optical fiber. Appl. Opt. 27, 2647–2649 (1988)ADSCrossRefGoogle Scholar
  30. Shiyao, F., Gao, C., Wang, T., Zhai, Y., Yin, C.: Anisotropic polarization modulation for the production of arbitrary Poincaré beams. JOSA B 35, 1–7 (2018)ADSGoogle Scholar
  31. Shu, W., Ling, X., Fu, X., Liu, Y., Ke, Y., Luo, H.: Polarization evolution of vector beams generated by q-plates. Photon. Res. 5, 64–72 (2017)CrossRefGoogle Scholar
  32. Smith, A.M.: Birefringence induced by bends and twists in single-mode optical fiber. Appl. Opt. 19, 2606–2611 (1980)ADSCrossRefGoogle Scholar
  33. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, London (1983)Google Scholar
  34. Snyder, A.W., Young, W.R.: Modes of optical waveguides. J. Opt. Soc. Am. 68, 297–309 (1978)ADSCrossRefGoogle Scholar
  35. Sroor, H., Lisa, N., Naidoo, D., Litvin, I., Forbes, A.: Generation and amplification of vector vortex beams. Proc. SPIE 10518, 105181T (2018)Google Scholar
  36. Thyagarajan, K., Ghatak, A.K., Sharma, A.: Vector modes of an optical fiber in the weakly guiding approximation. J. Light Wave Technol. 7, 51–53 (1989)ADSCrossRefGoogle Scholar
  37. Töppel, F., Aiello, A., Marquardt, C., Giacobino, E., Leuchs, G.: Classical entanglement in polarization metrology. N. J. Phys. 16, 073019 (2014)CrossRefGoogle Scholar
  38. Viswanathan, N.K., Krishna Inavalli, V.V.G.: Generation of optical vector beams using a two-mode fiber. Opt. Lett. 34, 1189–1191 (2009)ADSCrossRefGoogle Scholar
  39. Volpe, G., Petrov, D.: Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams. Opt. Commun. 237, 89–95 (2004)ADSCrossRefGoogle Scholar
  40. Wang, J.: Advances in communications using optical vortices. Photon. Res. 4, B14–B28 (2016)CrossRefGoogle Scholar
  41. Wang, X.-L., Li, Y., Chen, J., Guo, C.-S., Ding, J., Wang, H.-T.: A new type of vector fields with hybrid states of polarization. Opt. Exp. 18, 10786–10795 (2010)ADSCrossRefGoogle Scholar
  42. Zhan, Q.: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology WarangalWarangalIndia

Personalised recommendations