Influence of bath temperatures on physical and electrical properties of potentiostatically deposited Cu2O thin films for heterojunction solar cell applications

  • K. P. Ganesan
  • G. Sivakumar
  • N. AnandhanEmail author
  • T. Marimuthu
  • R. Panneerselvam
  • A. Amali Roselin


In the present work, the influence of bath temperatures on structural, morphological, vibrational, optical, electrical and photo response properties of the electrochemically deposited cuprous oxide (Cu2O) thin films on fluorine doped tin oxide substrate is extensively investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), Micro Raman spectroscopy, photo luminescence (PL) spectroscopy, UV–visible spectroscopy, LCR measurement, Keithley 4200 semiconductor characterization system respectively. XRD patterns reveal that the deposited Cu2O films have cubic structure grown along the preferential (111) orientation and the film deposited at 40 °C shows better crystalline nature when compared at 55 and 70 °C. The micro structural properties of films such as crystallite size (D), dislocation density (δ), micro strain (ε) and stacking fault probability (α) were calculated and discussed in detail. SEM displays a well-defined three side pyramid shaped morphology for the film deposited at 40 °C. Micro Raman and PL spectra reveal the film deposited at 40 °C by being better crystalline at a higher acceptor concentration. UV–Visible study shows that the optical energy band gap increases from 2.05 to 2.17 eV with an increase in bath temperature from 40 to 70 °C. The frequency-temperature dependence of impedance analysis shows a higher electrical conductivity for a film deposited at 40 °C compared to other bath temperatures. I-V measurement illustrates a good photoconductivity response for Cu2O thin film deposited at 40 °C compared to films deposited at 55 and 70 °C.


Cuprous oxide X-ray diffraction Pyramid shape Micro Raman spectroscopy Photoconductivity 


  1. Acharya, T., Chouhary, R.N.P.: Structural, ferroelectric and electrical propertied of NiTiO3 ceramic. J. Electron. Mater. 44, 271–280 (2015)CrossRefADSGoogle Scholar
  2. Balkanski, M., Nusimovici, M.A., Reydellet, J.: First order Raman spectrum of Cu2O. Solid State Commun. 7, 815–818 (1969)CrossRefADSGoogle Scholar
  3. Barret, C.S., Massalski, T.B.: Structure of metals, 3rd edn. Pergamon, Oxford (1980)Google Scholar
  4. Bohannan, E.W., Nicic, I.M., Kothari, H.M., Switzer, J.A.: Enantiospecific electrodeposition of chiral CuO films on Cu (1110) from aqueous Cu(II) tartrate and amino acid complexes. Electrochim. Acta 53, 155–160 (2007)CrossRefGoogle Scholar
  5. Chandrak, S., Naganjarurojana, A.: Dielectric properties of BaTiO3-modified BiFeO3 Ceramics. J. Ferroelectrics 410, 75–81 (2011)CrossRefGoogle Scholar
  6. Chatterjee, S., Sudip, K., Pal, J.: Formation all-oxide solar cells in atmospheric condition based on Cu2O thin films grown through SILAR techniques. Energy Mater. Sol. Cells 147, 17–26 (2016)CrossRefGoogle Scholar
  7. David Prabu, R., Valanarasu, S., Ganesh, V.: Investigation of molar concentration of effect on structural, optical, electrical and photovoltaic properties of spray-coated Cu2O thin films. J. Surf. Interface Anal. 50, 346–353 (2018a)CrossRefGoogle Scholar
  8. David Prabu, R., Valanarasu, S., Ganesh, V.: Effect of spray-pressure on optical, electrical and solar cell efficiency of novel Cu2O thin films. J. Surf. Coat. Tech. 347, 164–172 (2018b)CrossRefGoogle Scholar
  9. Dawson, P., Hargreave, M., Wilkinson, G.: The dielectric and lattice vibrational spectrum of cuprous oxide. J. Phys. Chem. Solids 34, 2201–2208 (1973)CrossRefADSGoogle Scholar
  10. Eisermann, S., Kronenberger, A., Laufer, A., Bieber, J., Haas, G., Lautenschlager, S., Homm, G., Klar, P.J., Meyer, B.K.: Copper oxide thin films by chemical vapor deposition: synthesis, characterization and electrical properties. Phys. Status Solidi A 209, 531–536 (2012)CrossRefADSGoogle Scholar
  11. El-Shaer, A., Ramadan, A., Abd Elraod Tawfik, M.: Fabrication of homojunction cuprous oxide solar cell by electrodeposition method. Nat. Sci. 13, 14–22 (2015)Google Scholar
  12. Ganesan, K.P., Anandhan, N., Dharuman, V., Sami, P., Panneerselvam, R., Marimuthu, T.: Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Result Phys. 7, 82–86 (2017)CrossRefADSGoogle Scholar
  13. Georieva, V., Ristov, M.: Electrodeposited cuprous oxide on indium tin oxide for solar applications. Sol. Energy Mater. Sol. Cells 73, 67–73 (2002)CrossRefGoogle Scholar
  14. Ghosh, S., Avasthi, D.K., Shah, P., Ganesan, V., Gupta, A., Sarangi, D., Bhattacharya, R., Assman, W.: Deposition of thin films of different oxides of copper by reactive sputtering and their application. Vacuum 57, 377–385 (2000)CrossRefADSGoogle Scholar
  15. Harrick, N.J.: Internal reflection spectroscopy validity of effective thickness equations. J. Appl. Optics 10, 19–23 (1971)CrossRefADSGoogle Scholar
  16. He, Z., Stevens, M., Smith, D.J., Bennett, P.A.: Epitaxial titanium silicide islands and nanowires. Surf. Sci. 524, 148–156 (2003)CrossRefADSGoogle Scholar
  17. Huang, M.C., Wang, T.H., Chang, W.S.: Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate. Appl. Surf. Sci. 301, 369–377 (2014)CrossRefADSGoogle Scholar
  18. Ito, T., Masumi, T.: Optical properties of Cu2O studied by spectroscopic ellipsometry. J. Phys. Soc. 67, 2125–2131 (1998)CrossRefADSGoogle Scholar
  19. Ivill, M., Overberg, M.E., Abernathy, C.R., Norton, D.P., Theodoropoulou, N., Budi, J.D.: Properties of Mn-doped Cu2O semiconducting thin films grown by pulsed-laser deposition. Solid-State Electron. 47, 2215–2220 (2003)CrossRefADSGoogle Scholar
  20. Izaki, M., Shinagawa, T., Mizuno, K.T., Ida, Y., Inaba, M., Tasaka, A.: Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D Appl. Phys. 40, 3326–3329 (2007)CrossRefADSGoogle Scholar
  21. Izaki, M., Sasaki, S., Binti Mohamed, F., Shinagawa, T.: Effect of preparation temperature on optical and electrical characteristics of (111)-oriented Cu2O films electrodeposited on (111)-Au film. Thin Solid Films 520, 1779–1783 (2012)CrossRefADSGoogle Scholar
  22. Jawad, M.F., Ismail, R.A., Yahea, K.Z.: Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci.: Mater. Electron. 22, 1244–1247 (2011)Google Scholar
  23. Jiang, X., Qibin, L.: Effect of temperature and additive on the structural, morphological and optical properties of Cu2O thin films. Optik 126, 5544–5547 (2015)CrossRefADSGoogle Scholar
  24. Klug, H.P., Alexander, L.E.: X-ray diffraction procedures for polycrystalline and amorphous materials, pp. 618–708. Wiley, New York (1974)Google Scholar
  25. Latif, I., Alwan, T.B., Al-Dujaili, A.H.: Low frequency dielectric study of PAPA-PVA-GR nanocomposites. Nanosci. Nanotechnol. 2, 190–200 (2012)CrossRefGoogle Scholar
  26. Li, X., Li, W., Dong, X.: Effects of growth process on structural and optical properties of chemical bath deposition cadmium sulfide thin films. Jpn. J. Appl. Phys. 45, 9108–9110 (2006)CrossRefADSGoogle Scholar
  27. Logu, T., Raliya, R., Sethuraman, K.: Hierarchical architecture of CuInS2 microsphere thin films altering laterally aligned crystallographic plane growth by Cd and V doping. Cryst. Eng. comm. 1039, 1–9 (2017)Google Scholar
  28. Mageshwari, K., Sathyamoorthy, R.: Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337–343 (2012)CrossRefGoogle Scholar
  29. Mahalingam, T., Dhanasekaran, V., Sundraram, K., Kathalingam, A., Rhee, J.-K.: Characterization of electroplated ZnTe coatings. Ionic 18, 299–306 (2012)Google Scholar
  30. Marimuthu, T., Anandhan, N., Thangamuthu, R., Surya, S.: Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications. Superlattices Microstructures 98, 332–341 (2016)CrossRefADSGoogle Scholar
  31. Messaudi, O., Ben assaker, I., Gannouni, A.: Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time. App. Sur. Sci. 366, 383–388 (2016)CrossRefADSGoogle Scholar
  32. Min, Z., Jianguo, L.V., Li, C., Gang, H.: Microstructure, morphology and sunlight response of cuprous oxide thin films. J. Mater. Sci.: Mater. Electron. 27, 1779–1804 (2015)Google Scholar
  33. Pagare, P.K., Torane, A.P.: Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor. J. Mater. Sci.: Mater. Electron. 28, 1386–1392 (2017a)Google Scholar
  34. Pagare, P.K., Torane, A.P.: Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor. J. Mater. Sci.: Mater. Electron. 28, 1386–1392 (2017b)Google Scholar
  35. Paracchino, A., Brauer, J.C., Moser, J.E., Thimsen, E.: Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J. Phys. Chem. C 116, 7341–7350 (2012)CrossRefGoogle Scholar
  36. Parida, K., Dehury, S.K., Chouhary, R.N.P.: Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. A 380, 31–32 (2016)CrossRefGoogle Scholar
  37. Pattanasattayavong, P., Thomas, S., Adamopoulos, G., Mclachlan, M., Anthopoulos, A.: P-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett. 102, 163505–1636508 (2013)CrossRefADSGoogle Scholar
  38. Ravichandran, C., Sathivelu, A., David Prabu, R.: Effect deposition temperature on key optoelectronic properties of electrodeposited cuprous oxide thin films. Opt. Quant. Electron. 50, 281–296 (2018)CrossRefGoogle Scholar
  39. Rawat, A., Mahavar, H.K., Tanwar, A.: Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull. Mater. Sci. 37, 273–279 (2014)CrossRefGoogle Scholar
  40. Septina, W., Ikeda, S., Alam Khan, M., Hirai, T., Harada, T., Matsumura, M.: Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 56, 4882–4888 (2011)CrossRefGoogle Scholar
  41. Shishiyanu, S.T., Lupan, O.I.: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 113, 468–476 (2006)CrossRefGoogle Scholar
  42. Shkir, M., Ganesh, V., Alfaily, S.: Tailoring the linear optical property of NiO thin films through Cr doping. J. Mat. Sci. Mat. Electron. 29, 6446–6457 (2018)CrossRefGoogle Scholar
  43. Su, Y.R., Wang, M.D., Xie, F.Y., Chen, J., Xie, W.G., Zhao, N., Xu, J.B.: In modification of low cost Cu electrodes for high-performance low-voltage penta-cene thin film transistors (TFTS). Int. J. Org. Electron. 14, 775–781 (2013)CrossRefGoogle Scholar
  44. Switzer, J.A., Liu, R., Bohannan, E.W., Ernst, F.: Epitaxial electrodeposition of a crystalline metal oxide on to single-crystalline silicon. J. Phys. Chem. B 48, 12369–12372 (2002)CrossRefGoogle Scholar
  45. Wang, P., Wu, H., Tang, Y., Amal, R., Hau, Y.: Electrodeposited Cu2O as photoelectrodes with controllable conductivity type for solar energy conversion. J. Phys. Chem. C 119, 26275–26282 (2015)CrossRefGoogle Scholar
  46. Wu, S., Yin, Z., He, Q., Lu, G., Zhou, X., Zhang, H.: Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J. Mater. Chem. 21, 3467–3470 (2011)CrossRefGoogle Scholar
  47. Xu, H.Y., Dong, J.K.: One step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent. Chem. Mater. Chem. Phys. 143, 713–719 (2014)CrossRefGoogle Scholar
  48. Zhang, S., Peng, F., Zhang, H., liu, H., Zhao, H.: Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochem. Commun. 13, 861–864 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials and Thin Film Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Department of PhysicsSaiva Bhanu Kshatriya CollegeAruppukottaiIndia
  3. 3.Department of Physics-CISLAnnamalai UniversityChidambaramIndia

Personalised recommendations