Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells

  • Hamid HeidarzadehEmail author


In this report the un-surveyed domain of silicon-based intermediate band solar cell (IBSC) has been studied. Intermediate band (IB) has been created in 3C-SiC through substitution of cobalt (Co) atoms within super cell structures as a consequence of interaction between the crystalline potential and spin interaction with d orbitals of Co. The band structure, density of state and absorption coefficient of the new material have been extracted. Large band gap of 3C-SiC along with the proper selection of the guest Co atoms provides both high conversion efficiency and also, the possibility to reach the theoretical optimal band gap for photovoltaic applications. However, we demonstrated that a metallic narrow IB is formed whiten the forbidden band energy of 3C-SiC when Co atoms are located inside that. The maximum conversion efficiencies near 60% and 55% are obtained under AM1.5 and AM0 spectra, respectively. Our theoretical results provide a possible way to design high efficiency solar cell based on silicon carbide.


Intermediate band solar cell IBSC Silicon carbide High efficiency Transition metal Density functional theory 


  1. Aguilera, I., et al.: Theoretical optoelectronic analysis of MgIn2S4 and CdIn2 S4 thiospinels: effect of transition-metal substitution in intermediate-band formation. Phys. Rev. B 81(7), 0752061–0752069 (2010)CrossRefGoogle Scholar
  2. Bailey, C.G., et al.: Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 1631051–1631053 (2011)CrossRefGoogle Scholar
  3. Beneš, O., et al.: Density functional theory, molecular dynamics, and differential scanning calorimetry study of the RbF–CsF phase diagram. J. Chem. Phys. 130(13), 1347161–13471613 (2009)CrossRefGoogle Scholar
  4. Bhatnagar, M., Baliga, B.J.: Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans. Electron. Dev. 40(3), 645–655 (1993)CrossRefADSGoogle Scholar
  5. Blokhin, S., et al.: AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. Semiconductors 43(4), 514–518 (2009)CrossRefADSGoogle Scholar
  6. Burke, K., Ernzerhof, M., Perdew, J.P.: The adiabatic connection method: a non-empirical hybrid. Chem. Phys. Lett. 265(1), 115–120 (1997)CrossRefADSGoogle Scholar
  7. Cuadra, L., Marti, A., Luque, A.: Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Trans. Electron. Dev. 51(6), 1002–1007 (2004)CrossRefADSGoogle Scholar
  8. Elborg, M., et al.: Voltage dependence of two-step photocurrent generation in quantum dot intermediate band solar cells. Sol. Energy Mater. Sol. Cells 134, 108–113 (2015)CrossRefGoogle Scholar
  9. Falama, R.Z., Welaji, F.N., Dountio, E.G., Doka, S., Kofane, T.: Impact of high electric field on the detailed balance limit of efficiency of solar cells. Appl. Phys. A 123, 3501–3504 (2017)CrossRefGoogle Scholar
  10. Gimpel, T., Winter, S., Boßmeyer, M., Schade, W.: Quantum efficiency of femtosecond-laser sulfur hyperdoped silicon solar cells after different annealing regimes. Sol. Energy Mater. Sol. Cells 180, 168–172 (2018)CrossRefGoogle Scholar
  11. Glunz, S., et al.: Optimized high-efficiency silicon solar cells with Jsc = 42 mA/cm2 and η = 23.3%. In: Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997)Google Scholar
  12. Green, M.A., Bremner, S.P.: Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–24 (2017)CrossRefADSGoogle Scholar
  13. Green, M.A., et al.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015)CrossRefGoogle Scholar
  14. Heidarzadeh, H.: Comprehensive investigation of core–shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic–inorganic halide perovskite solar cell. Mater. Res. Express 5, 0362081–0362088 (2018)Google Scholar
  15. Heidarzadeh, H., et al.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C-SiC/Si. Optik 125(3), 1292–1296 (2014a)CrossRefADSGoogle Scholar
  16. Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Effect of dopant concentrations on conversion efficiency of SiC-based intermediate band solar cells. In: International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), pp. 119–124. Springer (2014b)Google Scholar
  17. Heidarzadeh, H., et al.: Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photonics Energy 4(1), 0420981–04209812 (2014c)CrossRefGoogle Scholar
  18. Heidarzadeh, H., Mehrfar, F.: Effect of size non-uniformity on performance of a plasmonic perovskite solar cell: an array of embedded plasmonic nanoparticles with the Gaussian distribution radiuses. Plasmonics 13, 2305–2312 (2018)CrossRefGoogle Scholar
  19. Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: A new proposal for simultaneous multicolor detection based on quantum dots and selective energy contacts. IEEE Trans. Electron Dev. 62, 2231–2237 (2015)CrossRefADSGoogle Scholar
  20. Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core–shell hemispherical nanoparticles and metallic back grating. Appl. Opt. 55, 1779–1785 (2016)CrossRefADSGoogle Scholar
  21. Hu, K., Wang, D., Zhao, W., Gu, Y., Bu, K., Pan, J., Qin, P., Zhang, X., Huang, F.: Intermediate band material of titanium-doped tin disulfide for wide spectrum solar absorption. Inorg. Chem. 57, 3956–3962 (2018)CrossRefGoogle Scholar
  22. Hubbard, S., et al.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 1235121–1235123 (2008)CrossRefGoogle Scholar
  23. Imran, A., Jiang, J., Eric, D., Yousaf, M.: Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell. In: 2017 International Conference on Optical Instruments and Technology: Micro/Nano Photonics: Materials and Devices, International Society for Optics and Photonics, p. 106220A (2018)Google Scholar
  24. Kim, J., et al.: Creating intermediate bands in ZnTe via co-alloying approach. Appl. Phys. Express 7(12), 121201 (2014)CrossRefADSGoogle Scholar
  25. Laghumavarapu, R., et al.: Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91(24), 243115–243115-3 (2007)CrossRefADSGoogle Scholar
  26. Linares, P., et al.: Voltage limitation analysis in strain-balanced InAs/GaAsN quantum dot solar cells applied to the intermediate band concept. Sol. Energy Mater. Sol. Cells 132, 178–182 (2015)CrossRefGoogle Scholar
  27. Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5011–5017 (1997)CrossRefADSGoogle Scholar
  28. Luque, A., et al.: General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence. J. Appl. Phys. 96(1), 903–909 (2004)CrossRefADSGoogle Scholar
  29. Martí Vega, A., et al.: Elements of the design and analysis band solar of quantum-dot intermediate cells. Thin Solid Films 516(20), 6716–6722 (2008)CrossRefADSGoogle Scholar
  30. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5193 (1976)MathSciNetCrossRefADSGoogle Scholar
  31. Navruz, T., Saritas, M.: Efficiency variation of the intermediate band solar cell due to the overlap between absorption coefficients. Sol. Energy Mater. Sol. Cells 92(3), 273–282 (2008)CrossRefGoogle Scholar
  32. Olsson, P., Domain, C., Guillemoles, J.-F.: Ferromagnetic compounds for high efficiency photovoltaic conversion: the case of AlP:Cr. Phys. Rev. Lett. 102(22), 2272041–2272044 (2009)CrossRefGoogle Scholar
  33. Oshima, R., Takata, A., Okada, Y.: Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Appl. Phys. Lett. 93(8), 083111–083111-3 (2008)CrossRefADSGoogle Scholar
  34. Palacios, P., et al.: Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. Phys. Rev. Lett. 101(4), 464031–464034 (2008)CrossRefGoogle Scholar
  35. Pan, Z., Rao, H., Mora-Seró, I., Bisquert, J., Zhong, X.: Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018)CrossRefGoogle Scholar
  36. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)CrossRefADSGoogle Scholar
  37. Ranjan, M., Bhatnagar, M.: Dense nanoparticles arrays for SERS sensors and plasmonic solar cells. In: Novel Optical Materials and Applications, Optical Society of America, pp. NoW3D. 6 (2018)Google Scholar
  38. Rau, U., Blank, B., Müller, T.C., Kirchartz, T.: Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 0440161–0440169 (2017)CrossRefGoogle Scholar
  39. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRefADSGoogle Scholar
  40. Tian, S.: Monte Carlo simulation of ion implantation in crystalline SiC with arbitrary polytypes. IEEE Trans. Electron. Dev. 55(8), 1991–1996 (2008)CrossRefADSGoogle Scholar
  41. Wahnón, P., Tablero, C.: Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Phys. Rev. B 65(16), 1651151–16511510 (2002)CrossRefGoogle Scholar
  42. Wang, W., Lin, A.S., Phillips, J.D.: Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl. Phys. Lett. 95(1), 0111031–0111033 (2009a)Google Scholar
  43. Wang, W., et al.: Generation and recombination rates at ZnTe:O intermediate band states. Appl. Phys. Lett. 95(26), 261107–261107-3 (2009b)CrossRefADSGoogle Scholar
  44. Wei, G., et al.: Thermodynamic limits of quantum photovoltaic cell efficiency. Appl. Phys. Lett. 91(22), 2235071–2235073 (2007)Google Scholar
  45. Winter, E., Micha, D., Klein, N., Pires, M., Souza, P.: Simulation of InGaAs/InGaP multiple quantum well systems for multijunction solar cell. In: 2017 32nd Symposium on Microelectronics Technology and Devices (SBMicro), IEEE, pp. 1–4 (2017)Google Scholar
  46. Yu, K., et al.: Diluted II–VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett. 91(24), 2464031–2464033 (2003)CrossRefGoogle Scholar
  47. Yu, K., et al.: Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 88(9), 092110–092110-3 (2006)CrossRefADSGoogle Scholar
  48. Zhang, Y., Shen, W.: Basic of Solid Electronics. Zhe-Jiang University Press, Hangzhou (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations