Advertisement

Optical diffraction radiation from a dielectric and a metal nanowire excited by a modulated electron beam

  • Dariia O. YevtushenkoEmail author
  • Sergii V. Dukhopelnykov
  • Alexander. I. Nosich
Article
  • 57 Downloads

Abstract

The optical diffraction radiation that accompanies the motion of a modulated beam of electrons near a dielectric and silver nanowire scatterers is investigated in the two-dimensional formulation. Our goal is to compute the field in the near and far zones and analyze how it depends on electron beam parameters. We demonstrate the excitation of internal resonances of such a scatterer that can be useful in the design of nanoscale non-invasive beam position monitors.

Keywords

Diffraction radiation Nanowire scatterers Smith–Purcell effect Surface wave Plasmon resonance Total scattering cross-section Absorption cross-section 

Notes

Acknowledgements

The first author acknowledges, with gratitude, the support of the IEEE Antennas and Propagation Society in the form of Pre-Doctoral Research Award.

References

  1. Baryshevsky, V.G., Gurnevich, E.A.: Cherenkov and parametric (quasi-Cherenkov) radiation produced by a relativistic charged particle moving through a crystal built from metallic wires. Nucl. Instrum. Methods B 402, 30–34 (2017)CrossRefADSGoogle Scholar
  2. Bobb, L., Kieffer, R., et al.: Feasibility of diffraction radiation for noninvasive beam diagnostics as characterized in a storage ring. Phys. Rev. Accel. Beams 21, 03801 (2018)CrossRefGoogle Scholar
  3. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-VCN Publ, Weinheim (2004)Google Scholar
  4. Byelobrov, V.O., Benson, T.M., Nosich, A.I.: Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements. IEEE J. Sel. Top. Quantum Electron. 18(6), 1839–1846 (2012)CrossRefADSGoogle Scholar
  5. Castellano, M.: A new non-intercepting beam size diagnostics using diffraction radiation from a slit. Nucl. Instrum. Methods Phys. Res. A 394, 275–280 (1997)CrossRefADSGoogle Scholar
  6. Castellano, M., et al.: Measurements of coherent diffraction radiation and its application for bunch length diagnostics in particle accelerators. Phys. Rev. E 63, 056501 (2001)CrossRefADSGoogle Scholar
  7. Cuevas, M., et al.: Complex frequencies and field distributions of localized surface plasmon modes in graphene-coated subwavelength wires. J. Quant. Spectrosc. Radiat. Transf. 173, 26–33 (2016)CrossRefADSGoogle Scholar
  8. Dettmann, C.P., Morozov, G.V., Sieber, M., Waalkens, H.: Internal and external resonances of dielectric disks. Eur. Phys. Lett. 87(3), 34003 (2009)CrossRefADSGoogle Scholar
  9. Fesenko, V.I., Shcherbinin, V.I., Tuz, V.R.: Multiple invisibility regions induced by symmetry breaking in a trimer of subwavelength graphene-coated nanowires. J. Opt. Soc. Am. A 35(10), 1760–1768 (2018)CrossRefADSGoogle Scholar
  10. Goponov, Y.A., Shatokhin, R.A., Sumitani, K.: Diffracted diffraction radiation and its application to beam diagnostics. Nucl. Instrum. Methods Phys. Res. A 885, 134–138 (2018)CrossRefADSGoogle Scholar
  11. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4378 (1972)CrossRefADSGoogle Scholar
  12. Karataev, P., Araki, S., Hamatsu, R., et al.: Beam-size measurement with optical diffraction radiation at KEK accelerator test facility. Phys. Rev. Lett. 93, 244802 (2004)CrossRefADSGoogle Scholar
  13. Leedle, K.J., Ceballos, A., Deng, H., et al.: Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures. Opt. Lett. 40(18), 4344–4347 (2015)CrossRefADSGoogle Scholar
  14. Naserpour, M., Zapata-Rodríguez, C.J., Vuković, S.M., et al.: Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers. Sci. Rep. 12, 12186/14 (2017)ADSGoogle Scholar
  15. Natarov, D.M.: Modes of a core–shell silver wire plasmonic nanolaser beyond the Drude formula. J. Opt. 16(7), 075002 (2014)CrossRefADSGoogle Scholar
  16. Natarov, D.M., Sauleau, R., Marciniak, M., Nosich, A.I.: Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires. Plasmonics 9(2), 389–407 (2014a)CrossRefGoogle Scholar
  17. Natarov, D.M., Marciniak, M., Sauleau, R., Nosich, A.I.: Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires. Opt. Express 22(23), 28190–28198 (2014b)CrossRefADSGoogle Scholar
  18. Nosich, A.I.: Diffraction radiation which accompanies the motion of charged particles near an open resonator. Radiophys. Quantum Electron. 24(8), 696–701 (1981)CrossRefADSGoogle Scholar
  19. Palocz, I., Oliner, A.A.: Leaky space-charge waves I: Cerenkov radiation. Proc. IEEE 53(1), 24–36 (1965)CrossRefGoogle Scholar
  20. Potylitsyn, A.P.: Resonant diffraction radiation and Smith–Purcell effect. Phys. Lett. A 238, 112–116 (1998)CrossRefADSGoogle Scholar
  21. Riso, M., Cuevas, M., Depine, R.A.: Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires. J. Opt. 17(7), 075001/8 (2015)CrossRefADSGoogle Scholar
  22. Smith, S.J., Purcell, E.M.: Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)CrossRefADSGoogle Scholar
  23. Talebi, N.: Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. J. Opt. 19, 103001 (2017)CrossRefADSGoogle Scholar
  24. van den Berg, P.M.: Smith–Purcell radiation from a line charge moving parallel to a reflection grating. J. Opt. Soc. Am. 63(6), 689–698 (1973)MathSciNetCrossRefADSGoogle Scholar
  25. Velichko, E.A., Natarov, D.M.: Localized versus delocalized surface plasmons: dual nature of resonances on a silver circular wire and a silver tube of large diameter. J. Opt. 20(7), 075002/9 (2018)CrossRefADSGoogle Scholar
  26. Veliev, E.I., Nosich, A.I., Shestopalov, V.P.: Radiation of an electron flux moving over a grating consisting of cylinders with longitudinal slits. Radiophys. Quantum Electron. 20(3), 306–313 (1977)CrossRefADSGoogle Scholar
  27. Vial, A., Laroche, T.: Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B 93, 139–143 (2008)CrossRefADSGoogle Scholar
  28. Yevtushenko, D.O., Dukhopelnikov, S.V., Odarenko, E.N., Nosich, A.I.: Optical diffraction radiation of electron beam in the presence of a dielectric nanowire resonator. In: Proceedings of International Conference on Mathematical Methods in Electromagnetic Theory (MMET-2018), Kyiv, 2018, pp. 148–151Google Scholar
  29. Zinenko, T.L., Byelobrov, V.O., Marciniak, M., Ctyroky, J., Nosich, A.I.: Grating resonances on periodic arrays of sub-wavelength wires and strips: from discoveries to photonic device applications. In: Shulika, O., Sukhoivanov, I. (eds.) Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, Ch. 4, vol. 199, pp. 65–79. Springer Series in Optical Sciences, Berlin (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Photonics and Laser EngineeringKharkiv National University of Radio ElectronicsKharkivUkraine
  2. 2.Laboratory of Micro and Nano OpticsInstitute of Radio-Physics and Electronics NASUKharkivUkraine

Personalised recommendations