Ultra-sensitive surface plasmon resonance biosensor based on MoS2–graphene hybrid nanostructure with silver metal layer

  • Hamid VahedEmail author
  • Cyrus Nadri


The optical biosensors based on the plasmonic technology are an important research item in the field of biophotonics. The graphene–molybdenum disulfide (MoS2) based hybrid structures are very effective in designing and fabricating of the sensitive optical biosensors. In this paper, we propose a nanostructure Ag/MoS2/graphene as an optical biosensor with high performance and sensitivity. The proposed configuration for this surface plasmon resonance (SPR) optical biosensor is Kretschmann. Herein, the enhancement of sensitivity for the proposed SPR optical biosensor is investigated in different states. By determining of the numbers of MoS2 layer and the thickness of the metal layer, we increased the sensitivity of the proposed biosensor. The maximum sensitivity ~ 190°/RIU is achieved. For this ultra-sensitive SPR biosensor with maximum sensitivity, the numbers of MoS2 and graphene layer is 2 and the resonance wavelength is determined 680 nm.


Biosensor Graphene Molybdenum disulfide Sensitivity Surface plasmon resonance 


  1. Averitt, R.D., Sarkar, D., Halas, N.J.: Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78(22), 4217 (1997)CrossRefADSGoogle Scholar
  2. Baronas, R., Ivanauskas, F., Kulys, J.: Mathematical Modeling of Biosensors: An Introduction for Chemists and Mathematicians, vol. 9. Springer, Berlin (2009)zbMATHGoogle Scholar
  3. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)CrossRefADSGoogle Scholar
  4. Castellanos-Gomez, A., Agraït, N., Rubio-Bollinger, G.: Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 96(21), 213116 (2010)CrossRefADSGoogle Scholar
  5. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C., Wang, C.R.C.: The shape transition of gold nanorods. Langmuir 15(3), 701–709 (1999)CrossRefGoogle Scholar
  6. Cole, R.M., Baumberg, J.J., de Abajo, F.J.G., Mahajan, S., Abdelsalam, M., Bartlett, P.N.: Understanding plasmons in nanoscale voids. Nano Lett. 7(7), 2094–2100 (2007)CrossRefADSGoogle Scholar
  7. Drude, P.: Zur elektronentheorie der metalle. Ann. Phys. 306(3), 566–613 (1900)CrossRefGoogle Scholar
  8. Filion-Côté, S., Roche, P.J.R., Foudeh, A.M., Tabrizian, M., Kirk, A.G.: Design and analysis of a spectro-angular surface plasmon resonance biosensor operating in the visible spectrum. Rev. Sci. Instrum. 85(9), 093107 (2014)CrossRefADSGoogle Scholar
  9. Healthcare, G.: Biacore sensor surface handbook. Technical report, GE Healthcare Bio-Sciences AB (2008)Google Scholar
  10. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)CrossRefGoogle Scholar
  11. Homola, J., Piliarik, M.: Surface Plasmon Resonance (SPR) Sensors. In: Homola, J. (eds.) Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, vol. 4. Springer, Berlin (2006)Google Scholar
  12. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors. Sens. Actuators B Chem. 54(1–2), 3–15 (1999)CrossRefGoogle Scholar
  13. Hossain, M., Rana, M.: Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sens. Lett. 14(2), 145–152 (2016)CrossRefGoogle Scholar
  14. Jha, R., Sharma, A.K.: Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region. J. Opt. A: Pure Appl. Opt. 11(4), 045502 (2009)CrossRefADSGoogle Scholar
  15. Kavcar, P., Sofuoglu, A., Sofuoglu, S.C.: A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hygiene Environ. Health 212(2), 216–227 (2009)CrossRefGoogle Scholar
  16. Kawata, S.: Near-field microscope probes utilizing surface plasmon polaritons. In: Kawata, S. (eds.) Near-Field Optics and Surface Plasmon Polaritons. Topics in Applied Physics, vol. 81. Springer, Berlin (2001)CrossRefGoogle Scholar
  17. Khurgin, J.B., Boltasseva, A.: Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37(8), 768–779 (2012)CrossRefGoogle Scholar
  18. Kretschmann, Erwin, Raether, Heinz: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12), 2135–2136 (1968)CrossRefADSGoogle Scholar
  19. Langhammer, C., Yuan, Z., Zorić, I., Kasemo, B.: Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6(4), 833–838 (2006)CrossRefADSGoogle Scholar
  20. Lee, K.-L., Lee, C.-W., Wang, W.-S., Wei, P.-K.: Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J. Biomed. Opt. 12(4), 044023 (2007)CrossRefADSGoogle Scholar
  21. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)CrossRefADSGoogle Scholar
  22. Matsubara, K., Kawata, S., Minami, S.: A compact surface plasmon resonance sensor for measurement of water in process. Appl. Spectrosc. 42(8), 1375–1379 (1988)CrossRefADSGoogle Scholar
  23. Mishra, A.K., Mishra, S.K., Verma, R.K.: An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J. Phys. D Appl. Phys. 48(43), 435502 (2015)CrossRefADSGoogle Scholar
  24. Murray, W.A., Barnes, W.L.: Plasmonic materials. Adv. Mater. 19(22), 3771–3782 (2007)CrossRefGoogle Scholar
  25. Neff, H., Sass, J.K., Lewerenz, H.J.: A photoemission-into-electrolyte study of surface plasmon excitation on high index faces of silver. Surf. Sci. Lett. 143(1), L356–L362 (1984)ADSGoogle Scholar
  26. Niklasson, G.A., Granqvist, C.G., Hunderi, O.: Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)CrossRefADSGoogle Scholar
  27. Nylander, C., Liedberg, B., Lind, T.: Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79–88 (1982)CrossRefGoogle Scholar
  28. Oh, B.-K., Lee, W., Chun, B.S., Bae, Y.M., Lee, W.H., Choi, J.-W.: The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectr. 20(9), 1847–1850 (2005)CrossRefGoogle Scholar
  29. Oliveira, L.C., Lima, A.M.N., Thirstrup, C., Neff, H.F.: Surface Plasmon Resonance Sensors: A Materials Guide to Design and Optimization. Springer, Berlin (2015)CrossRefGoogle Scholar
  30. Prasad, P.N.: Introduction to Biophotonics. Wiley, London (2004)Google Scholar
  31. Rahman, M.S., Anower, M.S., Hasan, M.R., Hossain, M.B., Haque, M.I.: Design and numerical analysis of highly sensitive Au-MoS2–graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)CrossRefADSGoogle Scholar
  32. Sambles, J.R., Bradbery, G.W., Yang, F.: Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32(3), 173–183 (1991)CrossRefADSGoogle Scholar
  33. Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  34. Serway, R.A., Jewett, J.W.: Principles of Physics, vol. 1. Saunders College Pub, Fort Worth (1998)Google Scholar
  35. Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017)CrossRefADSGoogle Scholar
  36. Singh, P.: Surface Plasmon Resonance. Nova Science Publishers, Incorporated (2014)Google Scholar
  37. Smith, D.Y., Shiles, E., Inokuti, M.: The optical properties of metallic aluminum. In: Handbook of Optical Constants of Solids, pp. 369–406. Academic Press (1997)Google Scholar
  38. Stephan, O., Taverna, D., Kociak, M., Henrard, L., Suenaga, K., Colliex, C.: Surface plasmon coupling in nanotubes. In: AIP Conference Proceedings, vol. 633, no. 1, pp. 326–331. AIP (2002)Google Scholar
  39. Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J.J., Smith, D.R., Schultz, S.: Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087–1090 (2003)CrossRefADSGoogle Scholar
  40. Tsay, J.M., Pflughoefft, M., Bentolila, L.A., Weiss, S.: Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J. Am. Chem. Soc. 126(7), 1926–1927 (2004)CrossRefGoogle Scholar
  41. Verma, R., Gupta, B.D., Jha, R.: Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160(1), 623–631 (2011)CrossRefGoogle Scholar
  42. Verma, A., Prakash, A., Tripathi, R.: Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015)CrossRefADSGoogle Scholar
  43. Wallace, B.J., Guzewich, J.J., Cambridge, M., Altekruse, S., Morse, D.L.: Seafood-associated disease outbreaks in New York, 1980–1994. Am. J. Prev. Med. 17(1), 48–54 (1999)CrossRefGoogle Scholar
  44. Wang, F., Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97(20), 206806 (2006)CrossRefADSGoogle Scholar
  45. Wu, L., Jia, Y., Jiang, L., Guo, J., Dai, X., Xiang, Y., Fan, D.: Sensitivity improved SPR biosensor based on the mos 2/graphene–aluminum hybrid structure. J. Lightw. Technol. 35(1), 82–87 (2017a)CrossRefADSGoogle Scholar
  46. Wu, L., Guo, J., Wang, Q., Shunbin, L., Dai, X., Xiang, Y., Fan, D.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 249, 542–548 (2017b)CrossRefGoogle Scholar
  47. Yuan, Y., Ding, L., Guo, Z.: Numerical investigation for SPR-based optical fiber sensor. Sens. Actuators B Chem. 157(1), 240–245 (2011)CrossRefGoogle Scholar
  48. Zhao, J., Zhang, X.Y., Yonzon, C.R., Haes, A.J., Van Duyne, R.P.: Localized surface plasmon resonance biosensors. Nanomedicine (Lond) 1(2), 219–228 (2006)CrossRefGoogle Scholar
  49. Zribi, A., Fortin, J. (eds.): Functional Thin Films and Nanostructures for Sensors: Synthesis. Physics and Applications. Springer, Berlin (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering Emerging TechnologiesUniversity Of TabrizTabrizIran

Personalised recommendations