Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique

  • Esraa A. Al-Oubidy
  • Firas J. KadhimEmail author


In this work, nanostructured titanium dioxide (TiO2) photocatalysts with high optical and structural homogeneity were successfully synthesized by dc reactive magnetron sputtering technique. The TiO2 thin films were produced with high structural homogeneity without any heat treatment. Analysis of the X-ray diffraction patterns and UV–visible spectroscopy gave an indication that the structure of prepared films is anatase with energy band gap of 3.23 eV. The Fourier-transform infrared spectroscopy has confirmed the formation of Ti–O bond. The average size of TiO2 particles in the deposited films was ranging in 5–7 nm. These nanostructures are very applicable as photocatalysts as their photocatalytic activity was determined from the degradation rate with UV irradiation time as the first order reaction rate constant was determined to be 2.4 × 10−3 min−1.


Titanium dioxide Nanostructures Anatase phase Photocatalysis 


  1. Alhadrami, H.A., Baqasi, A., Iqbal, J., Shoudri, R.A.M., Ashshi, A.M., Azhar, E.I., Al-Hazmi, F., Al-Ghamdi, A., Wageh, S.: Antibacterial applications of anatase TiO2 nanoparticle. Am. J. Nanomater. 5(1), 31–42 (2017)CrossRefGoogle Scholar
  2. Al-Maliki, F.J., Al-Lamey, N.H.: Synthesis of Tb-doped titanium dioxide nanostructures by sol-gel method for environmental photocatalysis applications. J. Sol Gel. Sci. Technol. 81(1), 276–283 (2017)CrossRefGoogle Scholar
  3. Amano, F., Yasumoto, T., Prieto-Mahaney, O.-O., Uchida, S., Shibayama, T., Ohtani, B.: Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide. Chem. Commun. 17, 2311–2313 (2009)CrossRefGoogle Scholar
  4. Biancardo, M., Argazzi, R., Bignozzi, C.: Solid-state photochromic device based on nanocrystalline TiO2 functionalized with electron donor−acceptor species. Inorg. Chem. 44(26), 9619–9621 (2005)CrossRefGoogle Scholar
  5. Biener, J., Wittstock, A., Baumann, T.F., Weissmüller, J., Bäumer, M., Hamza, A.V.: Surface chemistry in nanoscale materials. Materials 2, 2404–2428 (2009)ADSCrossRefGoogle Scholar
  6. Bouachiba, Y., Bouabellou, A., Hanini, F., Kermiche, F., Taabouche, A., Boukheddaden, K.: Structural and optical properties of TiO2 thin films grown by sol-gel dip coating process. Mater. Sci. Pol. 32(1), 1–6 (2014)ADSCrossRefGoogle Scholar
  7. Carneiro, J.O., Teixeira, V., Carvalho, P., Azevedo S., Manninen, N.: Self-cleaning smart nanocoatings. In: Nanocoatings and Ultra-Thin Films: Technologies and Applications, Woodhead Publishing Series in Metals and Surface Engineering, pp. 397–413 (2011).
  8. Castrejón-Sánchez, V.H., Camps, E., Camacho-López, M.: Quantification of phase content in TiO2 thin films by Raman spectroscopy. Superficies y Vacío 27(3), 88–92 (2014)Google Scholar
  9. Chaiyakun, S., Pokaipisit, A., Limsuwan, P., Ngotawornchai, B.: Growth and characterization of nanostructured anatase phase TiO2 thin films prepared by DC reactive unbalanced magnetron sputtering. Appl. Phys. A 95(2), 579–587 (2009)ADSCrossRefGoogle Scholar
  10. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)CrossRefGoogle Scholar
  11. Ciancio, R., Vittadini, A., Selloni, A., Arpaia, R., Aruta, C., Granozio, F.M., di Uccio, U.S., Rossi, G., Carlino, E.: Evolution of nanostructures of anatase TiO2 thin films grown on (001) LaAlO3. J. Nanopart. Res. 15, 1735 (2013). ADSCrossRefGoogle Scholar
  12. Essalhi, Z., Hartiti, B., Lfakir, A., Siadat, M., Thevenin, P.: Optical properties of TiO2 thin films prepared by sol gel method. J. Mater. Environ. Sci. 7(4), 1328–1333 (2016)Google Scholar
  13. Evans, P., Sheel, D.W.: Photoactive and antibacterial TiO2 thin films on stainless steel. Surf. Coat. Technol. 201(22–23), 9319–9324 (2007)CrossRefGoogle Scholar
  14. Hadjoub, I., Touam, T., Chelouche, A., Atoui, M., Solard, J., Chakaroun, M., Fischer, A., Boudrioua, A., Peng, L.H.: Post-deposition annealing effect on RF-sputtered TiO2 thin-film properties for photonic applications. Appl. Phys. A 122, 78 (2016). ADSCrossRefGoogle Scholar
  15. Hamadi, O.A.: Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Proc. IMechE L J. Mater. Design Appl. 222(5), 65–71 (2008a)Google Scholar
  16. Hamadi, O.A.: Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraqi J. Appl. Phys. 4(3), 34–37 (2008b)Google Scholar
  17. Hameed, M.A., Jabbar, Z.M.: Optimization of preparation conditions to control structural characteristics of silicon dioxide nanostructures prepared by magnetron plasma sputtering. Silicon 10(4), 1411–1418 (2018)CrossRefGoogle Scholar
  18. Hammadi, O.A., Naji, N.E.: Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding. Opt. Quant. Electron. 48(8), 375 (2016). CrossRefGoogle Scholar
  19. Hammadi, O.A., Naji, N.E.: Characterization of polycrystalline nickel cobaltite nanostructures prepared by DC plasma magnetron Co-sputtering for gas sensing applications. Photon. Sens. 8(1), 43–47 (2018)ADSCrossRefGoogle Scholar
  20. Hammadi, O.A., Khalaf, M.K., Kadhim, F.J., Chiad, B.T.: Operation characteristics of a closed-field unbalanced dual-magnetrons plasma sputtering system. Bulg. J. Phys. 41(1), 24–33 (2014)Google Scholar
  21. Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Fabrication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering techniques. Opt. Quantum Electron. 47(12), 3805–3813 (2015)CrossRefGoogle Scholar
  22. Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering. Proc. IMechE N J. Nanoeng. Nanosys. 230(1), 32–36 (2016)Google Scholar
  23. Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons. Proc. IMechE L J. Mater. Design Appl 231(5), 479–487 (2017)Google Scholar
  24. Jin, Y., Li, G., Zhang, Y., Zhang, Y., Zhang, L.: Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. ‎J. Phys. Condens. Matter. 13, L913–L918 (2001)ADSCrossRefGoogle Scholar
  25. Kadhim, F.J., Anber, A.A.: Microhardness of nanostructured SixN1-x thin films prepared by reactive magnetron sputtering. Iraqi J. Appl. Phys. 12(2), 15–19 (2016)Google Scholar
  26. Karabay, I., Aydın Yüksel, S., Ongül, F., Öztürk, S., Asli, M.: Structural and optical characterization of TiO2 thin films prepared by sol–gel process. Acta Phys. Pol. A 121(1), 265–267 (2012)CrossRefGoogle Scholar
  27. Khairy, M., Zakaria, W.: Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyp. J. Petrol. 23(4), 419–426 (2014)CrossRefGoogle Scholar
  28. Lam, S.W., Soetanto, A., Amal, R.: Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles. J. Nanopart. Res. 11, 1971–1979 (2009)ADSCrossRefGoogle Scholar
  29. Quesada-González, M., Baba, K., Sotelo-Vázquez, C., Choquet, P., Carmalt, C.J., Parkin, I.P., Boscher, N.D.: Interstitial boron-doped anatase TiO2 thin-films on optical fibres: atmospheric pressure-plasma enhanced chemical vapour deposition as the key for functional oxide coatings on temperaturesensitive substrates. J. Mater. Chem. A 5, 10836–10842 (2017)CrossRefGoogle Scholar
  30. Salman, O.N., Agool, I.R., Ismail, M.I.: Preparation of the scattering layer based on TiO2 nanotube and their dye sensitized solar cell applications. Appl. Phys. A 123, 402 (2017). ADSCrossRefGoogle Scholar
  31. Stamate, M., Lazar, G., Lazar, I.: Anatase-rutile TiO2 thin films deposited in a d.c. magnetron sputtering system. Rom. J. Phys. 53(1–2), 217–221 (2008)Google Scholar
  32. Stefanov, B., Österlund, L.: Tuning the photocatalytic activity of anatase TiO2 thin films by modifying the preferred <001> grain orientation with reactive DC magnetron sputtering. Coatings 4, 587–601 (2014)CrossRefGoogle Scholar
  33. Yang, X.H., Yang, H.G., Li, C.Z.: Controllable nanocarving of anatase TiO2 single crystals with reactive 001 facets. Chem. Euro. J. 17(24), 6615–6619 (2011)CrossRefGoogle Scholar
  34. Zachariah, A., Baiju, K.V., Shukla, S., Deepa, K.S., James, J., Warrier, K.G.K.: Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 112(30), 11345–11356 (2008)CrossRefGoogle Scholar
  35. Zakrzewska, K., Radecka, M.: TiO2-based nanomaterials for gas sensing—influence of anatase and rutile contributions. Nanoscale Res. Lett. 12, 89–96 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq

Personalised recommendations