Advertisement

Nanoscale thermal analysis of InGaAs quantum well based semiconductor disk laser with different pump geometry

  • Peng ZhangEmail author
  • Lidan Jiang
  • Renjiang Zhu
  • Heyang Guo-Yu
  • Yanrong Song
Article
  • 32 Downloads

Abstract

Using the finite element method, thermal effects including the maximum temperature, the heat flux and the temperature gradient in the active region of semiconductor disk lasers with front and end pumped geometry are numerically analyzed at the first time. Nanoscale thermal conductivities of the multiple quantum wells and the distributed Bragg reflector are used to overcome the underestimate of the temperature rise which comes from the use of the weighted average of the bulk thermal conductivities in the previous works, and the calculated results are compared with the corresponding experiments. The maximum temperature of quantum wells in active region with end pump is always higher than that with front pump under same pump power. Because of its better mode matching, output powers of the end pumped laser are bigger than that of the front pumped laser when the pump power is relatively lower and the thermal rollover of laser has not happened. In comparison, the front pumped laser can tolerate much bigger pump power and produce much higher output power thanks to its better heat dissipation.

Keywords

Semiconductor disk laser Nanoscale thermal analysis Pump geometry 

Notes

Acknowledgements

This work is supported by the Chongqing Research Program of Basic Research and Frontier Technology (cstc2015jcyjBX0098, cstc2018jcyjAX0319), the National Natural Science Foundation of China (61575011), and the Foundation for the Creative Research Groups of Higher Education of Chongqing (CXTDX201601016).

References

  1. Adachi, S.: Lattice thermal conductivity of group-IV and III–V semiconductor alloys. J. Appl. Phys. 102, 063502 (2007)ADSCrossRefGoogle Scholar
  2. Aviles-Espinosa, R., Filippidis, G., Hamilton, C., Malcolm, G., Weingarten, K.J., Südmeyer, T., Barbarin, Y., Keller, U., Santos, S.I.C.O., Artigas, D., Loza-Alvarez, P.: Compact ultrafast semiconductor disk laser targeting GFP based nonlinear applications in living organisms. Biomed. Opt. Express 2, 739–747 (2011)CrossRefGoogle Scholar
  3. Butkus, M., Rautiainen, J., Okhotnikov, O.G., Hamilton, C.J., Malcolm, G.G., Mikhrin, S.S., Krestnikov, I.L., Livshits, D.A., Rafailov, E.U.: Quantum dot based semiconductor disk lasers for 1–1.3 μm. IEEE J. Sel. Top. Quantum 17, 1763–1771 (2011)CrossRefGoogle Scholar
  4. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)ADSCrossRefGoogle Scholar
  5. Calvez, S., Hastie, J.E., Guina, M., Okhotnikov, O.G., Dawson, M.D.: Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser Photonics Rev. 3, 407–434 (2009)ADSCrossRefGoogle Scholar
  6. Chilla, J., Shu, Q.Z., Zhou, H., Weiss, E., Reed, M., Spinelli, L.: Recent advances in optically pumped semiconductor lasers. Proc. SPIE 6451, 645109 (2007)CrossRefGoogle Scholar
  7. Corzine, S.W., Geels, R.S., Scott, J.W., Yan, R.H., Coldren, L.A.: Design of Fabry–Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 25, 1513–1524 (1989)ADSCrossRefGoogle Scholar
  8. Gaafar, M.A., Rahimi-Iman, A., Fedorova, K.A., Stolz, W., Rafailov, E.U., Koch, M.: Mode-locked semiconductor disk lasers. Adv. Opt. Photonics 8, 370–400 (2016)ADSCrossRefGoogle Scholar
  9. Hader, J., Moloney, J.V., Koch, S.W.: Microscopic evaluation of spontaneous emission and Auger processes in semiconductor lasers. IEEE J. Quantum Electron. 41, 1217–1226 (2005)ADSCrossRefGoogle Scholar
  10. Heinen, B., Wang, T.L., Sparenberg, M., Weber, A., Kunert, B., Hader, J., Koch, S.W., Moloney, J.V., Koch, M., Stolz, W.: 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser. Electron. Lett. 48, 516–517 (2012)CrossRefGoogle Scholar
  11. Heinen, B., Möller, C., Jandieri, K., Kunert, B., Koch, M., Stolz, W.: The thermal resistance of high-power semiconductor disk lasers. IEEE J. Quantum Electron. 51, 1–9 (2015)CrossRefGoogle Scholar
  12. Jacquemet, M., Picqué, N., Guelachvili, G., Garnache, A., Sagnes, I., Strassner, M., Symonds, C.: Continuous-wave 1.55 μm diode-pumped surface emitting semiconductor laser for broadband multiplex spectroscopy. Opt. Lett. 32, 1387–1389 (2007)ADSCrossRefGoogle Scholar
  13. Keller, U., Tropper, A.C.: Passively mode locked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006)ADSCrossRefGoogle Scholar
  14. Kemp, A.J., Valentine, G.J., Hopkins, J.M., Hastie, J.E., Smith, S.A., Calvez, S., Dawson, M.D., Burns, D.: Thermal management in vertical-external-cavity surface-emitting lasers finite-element analysis of a heatspreader approach. IEEE J. Quantum Electron. 41, 148–155 (2005)ADSCrossRefGoogle Scholar
  15. Kemp, A.J., Hopkins, J.M., Maclean, A.J., Schulz, N., Rattunde, M., Wagner, J., Burns, D.: Thermal management in 2.3 μm semiconductor disk lasers a finite element analysis. IEEE J. Quantum Electron. 4, 125–135 (2008)ADSCrossRefGoogle Scholar
  16. Kim, G.B., Kim, J.Y., Lee, J., Yoo, J., Kim, K.S., Lee, S.M., Cho, S., Lim, S.J., Kim, T., Park, Y.: End-pumped green and blue vertical external cavity surface emitting laser devices. Appl. Phys. Lett. 89, 181106 (2006)ADSCrossRefGoogle Scholar
  17. Kuznetsov, M., Hakimi, F., Sprague, R., Mooradian, A.: High-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Technol. Lett. 9, 1063–1065 (1997)ADSCrossRefGoogle Scholar
  18. Kuznetsov, M., Hakimi, F., Sprague, R., Mooradian, A.: Design and characteristics of high-power (> 0.5 W CW) diode-pumped vertical-external-cavity surface- emitting semiconductor lasers with circular TEM00 beams. IEEE J. Sel. Top. Quantum 5, 561–573 (1999)CrossRefGoogle Scholar
  19. Lindberg, H., Strassner, M., Gerster, E., Bengtsson, J., Larsson, A.: Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers. IEEE J. Sel. Top. Quantum 11, 1126–1134 (2005)CrossRefGoogle Scholar
  20. Men, Y., Wen, F.: Thermal properties of multiple quantum wells used in vertical-external-cavity surface-emitting lasers. Opt. Eng. 54, 076102 (2015)ADSCrossRefGoogle Scholar
  21. Mignot, A., Feugnet, G., Schwartz, S., Sagnes, I., Garnache, A., Fabre, C., Pocholle, J.P.: Single-frequency external-cavity semiconductor ring laser gyroscope. Opt. Lett. 34, 97–99 (2009)ADSCrossRefGoogle Scholar
  22. Morioka, S.B.: High power optically pumped semiconductor laser applications. Proc. SPIE 7919, 791913 (2011)CrossRefGoogle Scholar
  23. Piprek, J., Troger, T., Schroter, B., Kolodzey, J.A.K.J., Ih, C.S.: Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors. IEEE Photonics Technol. Lett. 10, 81–83 (1998)ADSCrossRefGoogle Scholar
  24. Rahim, M., Felder, F., Fill, M., Zogg, H.: Optically pumped 5 μm IV–VI VECSEL with Al-heat spreader. Opt. Lett. 33, 3010–3012 (2008)ADSCrossRefGoogle Scholar
  25. Rahimi-Iman, A.: Recent advances in VECSELs. J. Opt.-UK 18, 093003 (2016)ADSCrossRefGoogle Scholar
  26. Rudin, B., Rutz, A., Hoffmann, M., Maas, D.J.H.C., Bellancourt, A.R., Gini, E., Südmeyer, T., Keller, U.: Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Opt. Lett. 33, 2719–2721 (2008)ADSCrossRefGoogle Scholar
  27. Schulze, M., Masters, A.: Optically pumped semiconductor lasers expand the scope of potential applications. Laser Focus World 42, 77–79 (2006)Google Scholar
  28. Tropper, A.C., Hoogland, S.: Extended cavity surface-emitting semiconductor lasers. Prog. Quantum Electron. 30, 1–43 (2006)ADSCrossRefGoogle Scholar
  29. Wagner, J., Hugger, S., Rösener, B., Fuchs, F., Rattunde, M., Yang, Q., Bronner, W., Aidam, R., Köhler, K., Raab, M., Romasew, E., Romasew, E., Tholl, H.D.: Infrared semiconductor laser modules for DIRCM applications. Proc. SPIE 74830, 74830F (2009)ADSCrossRefGoogle Scholar
  30. Yao, T.: Thermal properties of AlAs/GaAs superlattices. Appl. Phys. Lett. 51, 1798–1800 (1987)ADSCrossRefGoogle Scholar
  31. Zhang, P., Song, Y., Tian, J., Zhang, X., Zhang, Z.: Gain characteristics of the InGaAs strained quantum wells with GaAs AlGaAs and GaAsP barriers in vertical-external-cavity surface-emitting lasers. J. Appl. Phys. 105, 053103 (2009)ADSCrossRefGoogle Scholar
  32. Zhang, P., Jiang, M., Zhu, R., Zhang, D., Song, Y.: Thermal conductivity of GaAs/AlAs distributed Bragg reflectors in semiconductor disk laser comparison of molecular dynamics simulation and analytic methods. Appl. Opt. 56, 4537–4542 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China
  2. 2.College of Applied SciencesBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations