Photonic generation of millimeter-wave ultra-wideband monocycle signal using up-conversion based on stimulated Brillouin scattering effect

  • Cong Du
  • Yue Wang
  • Di Wang
  • Qiang Li
  • Xian Sun
  • Wei DongEmail author
  • Xindong ZhangEmail author


We propose a novel scheme for photonic generation of millimeter-wave (MMW) ultra-wideband monocycle signal free of strong local oscillation (LO) and low-frequency component. A theory and a mathematical model are built to investigate the proposed scheme. Firstly, a differentiator is implemented using a dual-drive Mach–Zehnder modulator to attain monocycle pulses by differentiating a series of Gauss pulses. Subsequently, a dual-parallel Mach–Zehnder modulator and stimulated Brillouin scattering effect are employed to realize single-sideband modulation for up-converting the monocycle pulses to the MMW band. In the calculation, the generated signal is centered at 26 GHz with 10-dB bandwidth of 7 GHz and its power efficiency is about 50.08%. In addition, on–off keying modulation, amplitude modulation (PAM) and pulse position modulation monocycle pulses are generated. The spectrum of the generated signal meets with the FCC mask efficiently, so this technique has a potential application in MMW radar communication systems.


Millimeter-wave ultra-wideband (MMW-UWB) Frequency up-conversion Stimulated Brillouin scattering Single sideband modulation 



This work is financially supported by the National Natural Science Foundation of China (Grant No. 61875070), the Science and technology Development Plan of Jilin Province (Grant Nos. 20160519010JH, 20170204006GX, 20180201032GX), and the Science and Technology Project of Education Department of Jilin Province (Grant No. JJKH20190110KJ).


  1. Abraha, S.T., Okonkwo, C.M., Tangdiongga, E., Koonen, A.M.J.: Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses. Opt. Lett. 36(12), 2363–2365 (2011)CrossRefADSGoogle Scholar
  2. Abtahi, M., Mirshafiei, M., LaRochelle, S., Rusch, L.A.: All-optical 500-Mb/s UWB transceiver: an experimental demonstration. J. Lightw. Technol. 26(15), 2795–2802 (2008)CrossRefADSGoogle Scholar
  3. Aiello, G.R., Rogerson, G.D.: Ultra-wideband wireless systems. IEEE Microw. Mag. 4(2), 36–47 (2003)CrossRefGoogle Scholar
  4. Beltrán, M., Jensen, J.B., Yu, X., Llorente, R., Rodes, R., Ortsiefer, M., Monroy, I.T.: Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL. IEEE J. Sel. Areas Comm. 29(6), 1295–1303 (2011)CrossRefGoogle Scholar
  5. Chang, Q., Tian, Y., Ye, T., Gao, J., Su, Y.: A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion. IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008)CrossRefADSGoogle Scholar
  6. FCC, W.: DC, Federal Communications Commission revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems. First Report Order FCC, 2–48 (2002)Google Scholar
  7. Joel, S.A., Arturo, A.M., Celso, G.M.: Photonic frequency up-conversion of baseband pulses for IR-UWB using optical beating and balanced coherent detection. Microw. Opt. Technol. Lett. 58(11), 2749–2755 (2016)CrossRefGoogle Scholar
  8. Li, W., Wang, L.X., Zheng, J.Y., Li, M., Zhu, N.H.: Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion. IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013)CrossRefADSGoogle Scholar
  9. Li, W., Wang, W.T., Sun, W.H., Wang, L.X., Zhu, N.H.: Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator. Opt. Lett. 39(5), 1201–1203 (2014)CrossRefADSGoogle Scholar
  10. Li, W., Zhu, N.H., Wang, L.X., Qi, X.Q., Xie, L.: Tunable carrier generation and broadband data upconversion for RoF systems based on stimulated Brillouin scattering. IEEE Trans. Microw. Theory Tech. 59(9), 2350–2356 (2011)CrossRefADSGoogle Scholar
  11. Loayssa, A., Benito, D., Garde, M.J.: Applications of optical carrier Brillouin processing to microwave photonics. Opt. Fiber Technol. 8(1), 24–42 (2002)CrossRefADSGoogle Scholar
  12. Moreno, V., Mora, J., Barrera, D., Muriel, M.A., Capmany, J.: UWB Pulses generation and modulation through a customized FBG-based photonic device. IEEE Photon. Technol. Lett. 28(21), 2319–2322 (2016)CrossRefADSGoogle Scholar
  13. Porcino, D., Hirt, W.: Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun. Mag. 41(7), 66–74 (2003)CrossRefGoogle Scholar
  14. Shao, J., Sun, J.: Photonic ultrawideband impulse radio shape modulation based on dual-filter tuning. Opt. Lett. 38(2), 232–234 (2013)CrossRefADSGoogle Scholar
  15. Wang, C., Zeng, F., Yao, J.: All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion. IEEE Photon. Technol. Lett. 19(3), 137–139 (2007)CrossRefADSGoogle Scholar
  16. Wang, F., Dong, J., Xu, E., Zhang, X.: All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination. Opt. Express 18(24), 24588–24594 (2010)CrossRefADSGoogle Scholar
  17. Wang, Q., Yao, J.: Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Opt. Express 15(22), 14667–14672 (2007)CrossRefADSGoogle Scholar
  18. Wang, Y., Shan, Y., Pan, L., Wang, X., Meng, C., Dong, W., Zhang, X.: A tunable frequency-decuple optoelectronic oscillator based on frequency comb and stimulated Brillouin scattering. Opt. Quantum Electron. 49(7), 253–263 (2017)CrossRefGoogle Scholar
  19. Yang, C., Xia, L., Xu, J., Liu, D.: Complex UWB pulse generator based on nonlinear PM-IM conversion. Microw. Opt. Technol. Lett. 56(12), 2780–2784 (2014)CrossRefGoogle Scholar
  20. Yu, Y., Dong, J., Li, X., Zhang, X.: Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion. Opt. Commun. 285(7), 1748–1752 (2012)CrossRefADSGoogle Scholar
  21. Yu, Y., Jiang, F., Tang, H., Xu, L., Liu, X., Dong, J., Zhang, X.: Generation of Millimeter-Wave Ultra-Wideband Pulses Free of Strong Local Oscillation and Background. IEEE Photon. Technol. Lett. 28(21), 2363–2366 (2016a)CrossRefADSGoogle Scholar
  22. Yu, Y., Jiang, F., Tang, H., Xu, L., Liu, X., Dong, J., Zhang, X.: Reconfigurable photonic temporal differentiator based on a dual-drive Mach-Zehnder modulator. Opt. Express 24(11), 11739–11748 (2016b)CrossRefADSGoogle Scholar
  23. Zhang, F., Pan, S.: Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator. Opt. Express 21(22), 27017–27022 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations