Enhanced absorption of monolayer molybdenum disulfide (MoS2) using nanostructures with symmetrical cross resonator in the visible ranges

  • Xiudong Fang
  • Qianqian Tian
  • Guofeng YangEmail author
  • Yan Gu
  • Fuxue WangEmail author
  • Bin Hua
  • Xiaomi Yan


In order to enhance the absorption of monolayer molybdenum disulfide (MoS2), a novel nanostructure with symmetrical cross resonator based on MoS2 in the visible wavelength ranges has been proposed. At a resonant wavelength of 623 nm, the absorption of monolayer MoS2 in the absorption structure is as high as 82%, much higher than the bare MoS2 in the air. The electric field around monolayer MoS2 is enhanced by the guided mode resonance, thereby enhancing the absorption of monolayer MoS2 in the structure. The relevant parameters of the proposed structure are adjusted to achieve the tunability of the resonant wavelength in the visible ranges and the high-efficiency absorption of monolayer MoS2 in the structure, which is of great significance for the applications of MoS2-based optoelectronic devices.


Monolayer MoS2 Absorption Resonance Perfect absorption structure 



This work is supported by the National Natural Science Foundation of China (Nos. 11604124, 61604080, 61504050), Natural Science Foundation of Jiangsu Province (Nos. BK20150158, BK20160883, BM2014402), Open Project Program of State Key Laboratory of Food Science and Technology, Jiangnan University (No. SKLF-KF-201706), the China Postdoctoral Science Foundation (No. 2017M621623), the Fundamental Research Funds for Central Universities (Nos. JUSRP51628B, JUSRP51517, JUSRP51716A), the national first-class discipline program of Food Science and Technology (No. JUFSTR20180302), University Science Research Project of Jiangsu Province (No. 16KJB140011), and the Doctoral Starting Foundation of Wuxi Institute of Technology (No. 30593117033).


  1. Amin, M., Farhat, M., Bagcı, H.: A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. (2013). CrossRefGoogle Scholar
  2. Bahauddin, S.M., Robatjazi, H., Thomann, I.: Broadband absorption engineering to enhance light absorption in monolayer MoS2. ACS Photonics 3, 853–862 (2016)CrossRefGoogle Scholar
  3. Bao, Q.L., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)CrossRefGoogle Scholar
  4. Barrios, C.A., Almeida, V.R., Panepucci, R.R., Schmidt, B.S., Lipson, M.: Compact silicon tunable Fabry–Perot resonator with low power consumption. IEEE Photonics Technol. Lett. 16, 506–508 (2004)CrossRefADSGoogle Scholar
  5. Cai, Y., Lan, J., Zhang, G., Zhang, Y.-W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 107–114 (2013)Google Scholar
  6. Cao, J.T., Wang, J., Yang, G.F., Lu, Y.N., Sun, R., Yan, P.F., Gao, S.M.: Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector. Superlattices Microstruct. 110, 26–30 (2017)CrossRefADSGoogle Scholar
  7. Cheng, L., Wang, T., Jiang, X., Yan, X., Xiao, S.: Polarization and angular sensibility in the natural hyperbolic hexagonal boron nitride arrays. J. Phys. D Appl. Phys. (2017). CrossRefGoogle Scholar
  8. Cong, C., Shang, J., Wu, X., Cao, B., Peimyoo, N., Qiu, C., Sun, L., Yu, T.: Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2, 131–136 (2014)CrossRefGoogle Scholar
  9. Fan, S., Joannopoulos, J.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B (2002). CrossRefGoogle Scholar
  10. Fan, Y.S., Guo, C.C., Zhu, Z.H., et al.: Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express (2017). CrossRefGoogle Scholar
  11. Feng, Q., Pu, M.B., Hu, C.G., Luo, X.G.: Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefADSGoogle Scholar
  12. Huang, Y.J., Liu, L., Pu, M.B., Li, X., Ma, X.L., Luo, X.G.: A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)CrossRefGoogle Scholar
  13. Janisch, C., Song, H.M., Zhou, C.J., Lin, Z., Elías, A.L., Ji, D.X., Terrones, M., Gan, Q.Q., Liu, Z.W.: MoS2 monolayers on nanocavities: enhancement in light–matter interaction. 2D Mater. (2016). CrossRefGoogle Scholar
  14. Jiang, X., Wang, T., Xiao, S., Yan, X., Cheng, L.: Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 25, 27028–27036 (2017)CrossRefADSGoogle Scholar
  15. Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H., Zande, A., Chenet, D., Shih, E., Hone, J., Heinz, T.: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B (2014). CrossRefGoogle Scholar
  16. Li, X., Zhu, J., Wei, B.: Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmonenhanced applications. Chem. Soc. Rev. 45, 3145–3187 (2016a)CrossRefGoogle Scholar
  17. Li, J., Ji, Q., Chu, S., Zhang, Y., Li, Y., Gong, Q., Liu, K., Shi, K.: Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Sci. Rep. (2016b). CrossRefGoogle Scholar
  18. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)CrossRefADSGoogle Scholar
  19. Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)CrossRefADSGoogle Scholar
  20. Liu, J.T., Wang, T.B., Li, X.J., Liu, N.H.: Enhanced absorption of monolayer MoS2 with resonant back reflector. Appl. Phys. Lett. (2014). CrossRefGoogle Scholar
  21. Long, Y.B., Deng, H.D., Xu, H.T., Shen, L., Guo, W.B., Liu, C.Y., Huang, W.H., Peng, W.T., Li, L.X., Lin, H.J., Guo, C.: Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer. Opt. Mater. Express 7, 100–110 (2016)CrossRefADSGoogle Scholar
  22. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)CrossRefADSGoogle Scholar
  23. Lu, H., Cumming, B.P., Gu, M.: Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt. Lett. 40, 3647–3650 (2015)CrossRefADSGoogle Scholar
  24. Lu, H., Gan, X., Jia, B., Mao, D., Zhao, J.: Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt. Lett. 41, 4743–4746 (2016)CrossRefADSGoogle Scholar
  25. Lu, H., Gan, X.T., Mao, D., Zhao, J.L.: Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photonics Res. 5, 162–167 (2017a)CrossRefGoogle Scholar
  26. Lu, H., Gan, X.T., Mao, D., Fan, Y.C., Yang, D.X., Zhao, J.L.: Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures. Opt. Express 25, 21630–21636 (2017b)CrossRefADSGoogle Scholar
  27. Magnusson, R., Wang, S.S.: New principle for optical filters. Appl. Phys. Lett. 61, 1022–1024 (1992)CrossRefADSGoogle Scholar
  28. Mak, K.F., Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016)CrossRefADSGoogle Scholar
  29. Mak, K.F., Lee, C., Hone, J., Shan, J., et al.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. (2010). CrossRefGoogle Scholar
  30. Mueller, T., Xia, F., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)CrossRefGoogle Scholar
  31. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect atomically thin carbon films. Science 306, 666–669 (2014)CrossRefADSGoogle Scholar
  32. Piper, J.R., Fan, S.H.: Broadband absorption enhancement in solar cells with an atomically thin active layer. ACS Photonics 3, 571–577 (2016)CrossRefGoogle Scholar
  33. Qu, Y., Li, Q., Gong, H., Du, K., Bai, S., Zhao, D., Ye, H., Qiu, M.: Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films. Adv. Opt. Mater. 4, 480–486 (2016)CrossRefGoogle Scholar
  34. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRefADSGoogle Scholar
  35. Sidick, E., Knoesen, A., Mait, J.N.: Design and rigorous analysis of high-efficiency array generators. Appl. Opt. 32, 2599–2605 (1993)CrossRefADSGoogle Scholar
  36. Sobhani, A., Lauchner, A., Najmaei, S., Ayala-Orozco, C., Wen, F., Lou, J., Halas, N.J.: Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. (2014). CrossRefGoogle Scholar
  37. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRefADSGoogle Scholar
  38. Wang, B., Zhang, X., Yuan, X., et al.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111-1–131111-4 (2012)ADSGoogle Scholar
  39. Wang, J.C., Song, C., Hang, J., Hu, Z.D., Zhang, F.: Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. Opt. Express 25, 23880–23892 (2017)CrossRefADSGoogle Scholar
  40. Wang, X.Y., Wang, J.C., Hu, Z.D., Sang, T., Feng, Y.: Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures. Appl. Phys. Express (2018). CrossRefGoogle Scholar
  41. Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8, 899 (2014)CrossRefADSGoogle Scholar
  42. Xia, S.X., Zhai, X., Huang, Y., Liu, J.Q., Wang, L.L., Wen, S.C.: Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 42, 3052–3055 (2017)CrossRefADSGoogle Scholar
  43. Xiao, S., Wang, T., Liu, Y., Xu, C., Han, X., Yan, X.: Tunable light trapping and absorption enhancement with graphene ring arrays. Phys. Chem. Chem. Phys. 18, 26661–26669 (2016)CrossRefGoogle Scholar
  44. Yan, X., Wang, T., Han, X., Xiao, S., Zhu, Y., Wang, Y.: High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12, 1–7 (2016)Google Scholar
  45. Zeng, H., Dai, J., Yao, W., Xiao, D., et al.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012)CrossRefADSGoogle Scholar
  46. Zhang, W., Chuu, C.P., Huang, J.K., et al.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. (2014). CrossRefGoogle Scholar
  47. Zhang, J., Zhu, Z., Liu, W., Yuan, X., Qin, S.: Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering. Nanoscale 7, 13530–13536 (2015)CrossRefADSGoogle Scholar
  48. Zheng, J.B., Barton, R.A., Englund, D.: Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material based photovoltaics and photodetectors. ACS Photonics 1, 768–774 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and TechnologyJiangnan UniversityWuxiChina
  2. 2.Wuxi Institute of TechnologyWuxiChina
  3. 3.Jiangsu Xinguanglian Semiconductor Co., Ltd.WuxiChina

Personalised recommendations