Advertisement

Millimeter-wave home area network prospect with cost-effective RoF links

  • Ali Kabalan
  • Salim FaciEmail author
  • Anne-Laure Billabert
  • Catherine Algani
Article
  • 32 Downloads

Abstract

The growth towards the millimeter-wave band in the home area networks (HAN) leads to high data rate transmission to satisfy the new user services. Unfortunately, the transmission coverage in this band is limited to short distances because of the strong air absorption and obstacles such as walls. The effort is then focused on the extension of the network coverage of the wireless link in this band. Solutions based on multiple connected access points to optical fibers are useful methods to ensure wireless connectivity to the entire home. For HAN applications, radio-over-fiber (RoF) using intensity modulation and direct detection technique is the mostly favorite technology for the transmission of a broadband wireless signal because dealing with a cost-effective solution. We investigate in this paper the performance of such RoF-wireless architecture with low-cost optoelectronic modules through the error vector magnitude (EVM) metric. The RoF links investigated are a directly modulated VCSEL with integrated photoreceiver module, an electroabsorption-modulated laser with PIN photodiode and a Mach–Zehnder Modulator with PIN photodiode. A simulation approach based on equivalent electrical circuit models of photonic components is developed in ADS (Advanced Design System) by using a co-simulation technique that combines both analog and digital signals. The downlink channel of the complete transmission system including wireless channel and frequency conversion circuits to millimeter-wave (mm-wave) band is studied by simulation. The obtained results of EVM show good performances of cost-effective links with QPSK and 16-QAM modulation over a dynamic range of 15 dB.

Keywords

Radio over fiber Home area network Wireless channel Intensity modulation–direct detection 

References

  1. Akdeniz, M.R., Liu, Y., Samimi, M.K., Sun, S., Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014).  https://doi.org/10.1109/JSAC.2014.2328154 CrossRefGoogle Scholar
  2. Baykas, T., Sum, C., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011).  https://doi.org/10.1109/MCOM.2011.5936164 CrossRefGoogle Scholar
  3. Boers, M., Afshar, B., Vassiliou, I., Sarkar, S., Nicolson, S.T., Adabi, E., Perumana, B.G., Chalvatzis, T., Kavvadias, S., Sen, P., Chan, W.L., Yu, A.H., Parsa, A., Parsa, A., Nariman, M., Yoon, S., Besoli, A.G., Kyriazidou, C.A., Zochios, G., Castaneda, J.A., Sowlati, T., Rofougaran, M., Rofougaran, A.: A 16TX/16RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J. Solid State Circuits 49(12), 3031–3045 (2014).  https://doi.org/10.1109/JSSC.2014.2356462 ADSCrossRefGoogle Scholar
  4. Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat Photon 1(6), 319–330 (2007).  https://doi.org/10.1038/nphoton.2007.89 ADSCrossRefGoogle Scholar
  5. Carpintero, G., Guzmán, R.C., Gordón, C., Kervella, G., Chitoui, M., Van Dijk, F.: Photonic integrated circuits for radio-frequency signal generation. J. Lightw. Technol. 34(2), 508–515 (2016).  https://doi.org/10.1109/JLT.2015.2511040 ADSCrossRefGoogle Scholar
  6. Collonge, S., Zaharia, G., Zein, G.E.: Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Trans. Wirel. Commun. 3(6), 2396–2406 (2004).  https://doi.org/10.1109/TWC.2004.837276 CrossRefGoogle Scholar
  7. Emami, S.: UWB Communication Systems: Conventional and 60 GHz Principles, Design and Standards. Springer, Berlin (2013)CrossRefGoogle Scholar
  8. Ginestar, S., van Dijk, F., Accard, A., Poingt, F., Pommereau, F., Le Gouezigou, L., Le Gouezigou, O., Lelarge, F., Rousseau, B., Landreau, J., et al.: Tunable dual-mode DFB laser for millimetre-wave signal generation. Eur. Phys. J. Appl. Phys. 53(3), 33609 (2011).  https://doi.org/10.1051/epjap/2011100065 ADSCrossRefGoogle Scholar
  9. Guillory, J., Meyer, S., Sianud, I., Ulmer-moll, A.M., Charbonnier, B., Pizzinat, A., Algani, C.: Radio-over-fiber architectures. IEEE Veh. Technol. Mag. 5(3), 30–38 (2010).  https://doi.org/10.1109/MVT.2010.937847 CrossRefGoogle Scholar
  10. Guillory, J., Tanguy, E., Pizzinat, A., Charbonnier, B., Meyer, S., Algani, C., Li, H.: A 60 GHz wireless home area network with radio over fiber repeaters. J. Lightw. Technol. 29(16), 2482–2488 (2011).  https://doi.org/10.1109/JLT.2011.2159776 ADSCrossRefGoogle Scholar
  11. ITU-T G-series. Radio-over-fibre (RoF) technologies and their applications. ITU-T G Suppl. 55 (2015). URL http://handle.itu.int/11.1002/1000/12575
  12. Kabalan, A., Faci, S., Billabert, A.-L., Deshours, F., Algani, C.: Direct and external modulation of IF over fiber systems for 60 GHz wireless applications. Int. J. Microw. Wirel. Technol. 8(3), 597–602 (2016).  https://doi.org/10.1017/S1759078715000586 CrossRefGoogle Scholar
  13. Kassa, W.E., Billabert, A.L., Faci, S.: Electrical modeling of semiconductor laser diode for heterodyne RoF system simulation. IEEE J. Quantum Electron. 49(10), 894–900 (2013).  https://doi.org/10.1109/JQE.2013.2274383 ADSCrossRefGoogle Scholar
  14. Lebedev, A., Olmos, J.J.V., Pang, X., Forchhammer, S., Tafur Monroy, I.: Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure. Fiber Integr. Optics 32(2), 93–104 (2013).  https://doi.org/10.1080/01468030.2012.760689 ADSCrossRefGoogle Scholar
  15. Lecoche, F., Tanguy, E., Charbonnier, B., Li, H., van Dijk, F., Enard, A., Blache, F., Goix, M., Mallecot, F.: Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems. J. Lightw. Technol. 27(23), 5469–5474 (2009).  https://doi.org/10.1109/JLT.2009.2031612 ADSCrossRefGoogle Scholar
  16. Li, J., Ning, T., Pei, L., Qi, C.: Millimeter-wave radio-over-fiber system based on two-step heterodyne technique. Opt. Lett. 34(20), 3136–3138 (2009).  https://doi.org/10.1364/OL.34.003136 ADSCrossRefGoogle Scholar
  17. Maltsev, A., Maslennikov, R., Sevastyanov, A., Lomayev, A., Khoryaev, A.: Statistical channel model for 60 GHz WLAN systems in conference room environment. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–5 (2010)Google Scholar
  18. Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [invited paper]. IEEE Commun. Mag. 52(12), 132–141 (2014).  https://doi.org/10.1109/MCOM.2014.6979964 CrossRefGoogle Scholar
  19. Novak, D., Waterhouse, R.B., Nirmalathas, A., Lim, C., Gamage, P.A., Clark, T.R., Dennis, M.L., Nanzer, J.A.: Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52(1), 1–11 (2016)CrossRefGoogle Scholar
  20. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013).  https://doi.org/10.1109/ACCESS.2013.2260813 CrossRefGoogle Scholar
  21. Saleh, A.A.M., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun. 5(2), 128–137 (1987).  https://doi.org/10.1109/JSAC.1987.1146527 CrossRefGoogle Scholar
  22. Sen, P., Sarkar, S., Dawn, D., Pinel, S., Laskar, J.: Integrated VCO With up/down converter for Si-based 60 GHz WPAN applications. IEEE Microw. Wirel. Compon. Lett. 18(2), 139–141 (2008).  https://doi.org/10.1109/LMWC.2007.915140 CrossRefGoogle Scholar
  23. Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 2006 International Conference on Electrical and Computer Engineering, pp. 408–411 (2006).  https://doi.org/10.1109/ICECE.2006.35565710.1109/ICECE.2006.355657
  24. Steed, R.J., Pozzi, F., Fice, M.J., Renaud, C.C., Rogers, D.C., Lealman, I.F., Moodie, D.G., Cannard, P.J., Lynch, C., Johnston, L., Robertson, M.J., Cronin, R., Pavlovic, L., Naglic, L., Vidmar, M., Seeds, A.J.: Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector. Opt. Express 19(21), 20048–20053 (2011).  https://doi.org/10.1364/OE.19.020048 ADSCrossRefGoogle Scholar
  25. Yang, L.L.: 60 GHz: opportunity for gigabit WPAN and WLAN convergence. SIGCOMM Comput. Commun. Rev. 39(1), 56–61 (2008).  https://doi.org/10.1145/1496091.1496101 CrossRefGoogle Scholar
  26. Yong, S.-K.: A StaTG3c channel modeling sub-committee final report. IEEE 802.15- 07/0584- 01-003c (2009)Google Scholar
  27. Yong, S.K., Chong, C.-C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007(1), 078907 (2006).  https://doi.org/10.1155/2007/78907 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Le Conservatoire National des Arts et Métiers - ESYCOMParis Cédex 03France

Personalised recommendations