Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration

  • Saleh NaghizadeEmail author
  • Saber Mohammadi


We have presented a technique based on optofluidic infiltration and air-holes diameter variation together to design a 1 × 4 photonic crystal fiber power splitter (PCFPS) which have very low dispersion (D): (0 ≤ D ≤ 2.5 (ps/nm/km) and very low loss (L): 0 ≤ L ≤ 0.025(dB/cm) in a wide range of wavelengths (1100–1700 nm). This approach allows us to control the dispersion of the fundamental mode in a PCF beam splitter by choosing appropriate refractive indices for liquids and suitable diameters for air-holes in PCF power splitter. In fact, the techniques, used in this paper are complementary of each other and give us more excellent results which are better than other reported results in researchers’ works so far. In this work, a new design of 1 × 4 photonic crystal fiber power splitter is proposed by using beam propagation method. An optical Gaussian signal at a wavelength of third communication window range (1550 nm) is inserted into the central core and equally is divided into four core (25% of the total input power interred to each core). In addition, the physical behavior of coupling characteristics is obtained by using coupled mode analysis. Numerical simulations show that input optical signal can be equally divided in photonic crystal fiber structure with low dispersion and low loss. The total size of proposed PCFPS is 30 µm × 30 µm × 1.2 mm, too.


Optofluidic infiltration Air-holes diameter variation PCFPS Third communication window range 


  1. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, New York (2011)Google Scholar
  2. Birks, T.A., Knight, J.C., Russel, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRefGoogle Scholar
  3. Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)ADSCrossRefGoogle Scholar
  4. Diouf, M., Salem, A., Cherif, R., et al.: Super-flat coherent supercontinuum source in As38.8 Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt. 56(2), 163–169 (2017)ADSCrossRefGoogle Scholar
  5. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADSCrossRefGoogle Scholar
  6. Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., Naser Moghadasi, M., Moravvej-Farshi, M.K.: Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron 20(5), 582–589 (2014)ADSCrossRefGoogle Scholar
  7. Elbaz, D., Malka, D., Zalevsky, Z.: Photonic crystal fiber based 1 × N intensity and wavelength splitters/couplers. Electromagnetics 32, 209–220 (2013)CrossRefGoogle Scholar
  8. Ghanbari, A., Kashaninia, A., Sadr, A., Saghaei, H.: Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. Optik Int. J. Light Electron Opt. 140, 545–554 (2017)CrossRefGoogle Scholar
  9. Gong, J.M., Zuo, X., Zhao, Y.: The steady SRS analysis theory of DWDM transmission system in single-mode silica fiber. Opt. Commun. 350, 257–262 (2015)ADSCrossRefGoogle Scholar
  10. Haus, H.A., Huang, W.: Coupled-mode theory. Proc. IEEE 79, 1505–1517 (1991)CrossRefGoogle Scholar
  11. Joannopoulas, J.D., Mead, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)Google Scholar
  12. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2000)ADSCrossRefGoogle Scholar
  13. Kalantari, M., Karimkhani, A., Saghaei, H.: Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik Int. J. Light Electron Opt. 158, 142–151 (2018)CrossRefGoogle Scholar
  14. Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017)ADSCrossRefGoogle Scholar
  15. Knight, J.C., Broeng, J., Birks, T.A., St, P., Russel, J.: Photonic band gap guidance in optical fiber. Science 282, 1476–1478 (1998)CrossRefGoogle Scholar
  16. Kowsari, A., Saghaei, H.: Resonantly enhanced all-optical switching in microfiber Mach-Zehnder interferometers. IET Electron. Lett. 54, 229–231 (2017)CrossRefGoogle Scholar
  17. Kumar, A., Varshney, R.K., Sinha, R.K.: Scalar modes and coupling characteristics of eight port waveguide couplers. J Lightw. Technol. 7, 293–296 (1989)ADSCrossRefGoogle Scholar
  18. Lin, C.-T.: 400-Channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C and L-bands. Opt. Express 8(6), 6108–6115 (2010)ADSCrossRefGoogle Scholar
  19. Lin, C., Nguyen, V., French, W.: Wideband nearir continuum (0.7–2.1 μm) generated in low-loss optical fibres. Electron Lett 14(25), 822–823 (1978)ADSCrossRefGoogle Scholar
  20. Malitson, I.: Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55(10), 1205–1208 (1965)ADSCrossRefGoogle Scholar
  21. Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017)ADSCrossRefGoogle Scholar
  22. Malka, D., Zalevsky, Z.: Multicore photonic crystal fiber based 1 × 8 two-dimensional intensity splitters/couplers. Electromagnetics 33, 413–420 (2013)CrossRefGoogle Scholar
  23. Malka, D., Sintov, Y., Zalevsky, Z.: Fiber-laser monolithic coherent beam combiner based on multicore photonic crystal fiber. Opt. Eng. (2014). CrossRefGoogle Scholar
  24. Malka, D., Cohen, E., Zalevsky, Z.: Design of 4 × 1 power beam combiner based on multicore photonic crystal fiber. Appl. Sci 7, 695–704 (2017)CrossRefGoogle Scholar
  25. Mortimore, D.B.: Wavelength-flattened fused couplers. Electron. Lett. 21, 742–743 (1985)CrossRefGoogle Scholar
  26. Mortimore, D.B.: Theory and fabrication of 4 × 4 single-mode fused optical fiber coupler. Appl. Opt. 29, 371–374 (1990)ADSCrossRefGoogle Scholar
  27. Naghizade, S., Sattari-Esfahlan, S.M.: Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelength. J. Opt. Commun. (2017a). CrossRefGoogle Scholar
  28. Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon. Netw. Commun. 34, 445–450 (2017b)CrossRefGoogle Scholar
  29. Naghizade, S., Sattari-Esfahlan, S.M.: Loss-less elliptical channel drop filter for WDM applications. J. Opt. Commun. (2017c). CrossRefGoogle Scholar
  30. Nakasyotani, T., Toda, H., Kuri, T., et al.: Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinum light source. J. Lightw. Technol. 24(1), 404–410 (2006)ADSCrossRefGoogle Scholar
  31. Ranka, J.K., Windeler, R.S., Stentz, A.J.: Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)ADSCrossRefGoogle Scholar
  32. Reeves, W., Skryabin, D.V., Biancalana, F., et al.: Transformation and control of ultra-short pulses in dispersion engineered photonic crystal fibres. Nature 424, 511–515 (2003)ADSCrossRefGoogle Scholar
  33. Russell, P.S.J.: Photonic-crystal fibers. J. Lightw. Technol. 24, 4729–4749 (2006)ADSCrossRefGoogle Scholar
  34. Saghaei, H.: Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering 26(1), 16–22 (2017a)CrossRefGoogle Scholar
  35. Saghaei, H.: Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radio Eng. 26, 16–22 (2017b)Google Scholar
  36. Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57(20), 5591–5598 (2018)ADSCrossRefGoogle Scholar
  37. Saghaei, H., Ghanbari, A.: White light generation using photonic crystal fiber with sub-micron circular lattice. J. Electr. Eng. 68(4), 1–9 (2017)Google Scholar
  38. Saghaei, H., Ebnali-heidari, M., Moravvej-Farshi, M.K.: Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers. Appl. Opt. 54(8), 2072–2079 (2015)ADSCrossRefGoogle Scholar
  39. Saghaei, H., Moravvej-Farshi, M.K., Ebnali-Heidari, M., Moghadasi, M.N.: Ultra-wide mid-infrared supercontinuum generation in As 40 Se 60 chalcogenide fibers: solid core PCF versus SIF. IEEE J. Sel. Top. Quantum Electron. 22(2), 1–8 (2016a)CrossRefGoogle Scholar
  40. Saghaei, H., Heidari, V., Ebnali-Heidari, M., Yazdani, M.R.: A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik-Int. J. Light Electron Opt. 127(24), 11938–11947 (2016b)CrossRefGoogle Scholar
  41. Van Roey, J., van der Donk, J., Lagasse, P.E.: Beam-propagation method: analysis and assessment. J. Opt. Soc. Am. 71, 803–810 (1981)ADSCrossRefGoogle Scholar
  42. Varshney, S.K., Saitoh, K., Sinha, R.K., Koshiba, M.: Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters. J. Lightw. Technol. 27, 2062–2068 (2009)ADSCrossRefGoogle Scholar
  43. Wang, X.-Z., Zhu, H., Liu, Z.: Numerical study a broad low-loss pass-band optical metamaterials filter through tailoring dispersion. Opt. Communication 395, 236–240 (2017)ADSCrossRefGoogle Scholar
  44. Wu, T.-L., Chao, C.-H.: A novel ultra-flattened dispersion photonic crystal fiber. IEEE Photon. Technol. Lett. 17(1), 67–69 (2005)ADSCrossRefGoogle Scholar
  45. Zengerle, R., Leminger, O.G.: Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers. J. Lightw. Technol. 5, 1196–1198 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Photonics Department, Research Institute for Applied Physics and Astronomy (RIAPA)University of TabrizTabrizIran

Personalised recommendations