Advertisement

Beam steering characteristics of highly directive photoconductive dipole phased array antenna for terahertz imaging application

  • Isha Malhotra
  • Kumud Ranjan Jha
  • G. SinghEmail author
Article
  • 124 Downloads

Abstract

In this paper, the beam-steering characteristics of photoconductive dipole phased array antenna configuration at 1.95 THz is presented. The proposed array antenna configuration with frequency selective surface favourably improves its gain and directivity which is useful to upsurge the imaging capabilities to address the deliberations such as limited depth-of-field (DoF) and size-weight-and-power of the THz source for imaging applications. These are important considerations for applications like stand-off imaging and surveillance of moving targets where the high angular resolution as well as extended DoF are the important parameters for successful detection of concealed explosives. The projected planar profile and compact highly directive \(\left( {2 \times 2} \right)\) small-gap photoconductive dipole phased array antenna can be castoff for the exposure of concealed explosives such as RDX, TNT, and HMX which illustrate their substantial spectral absorption fingerprints in terahertz (1.4–2.2 THz) regime of the spectrum. A simple method of beam-steering has been explored based on phase controlled optical excitation of highly directive small-gap photoconductive dipole array antenna. Further, the effects of uniform progressive phase shift on the beam-steering of uniform linear array (along x-axis) as well as planar array (x-axis and y-axis) is investigated.

Keywords

Photoconductive dipole antenna Terahertz frequency Frequency selective surface Phased array Uniform current distribution 

Notes

Acknowledgements

The authors are sincerely thankful to the anonymous reviewers for their comments and suggestions to improve the quality of manuscript.

References

  1. Auston, D.H., Cheung, K.P., Smith, P.R.: Picosecond photoconducting hertzian dipoles. Appl. Phys. Lett. 45(3), 284–286 (1984)ADSGoogle Scholar
  2. Castro-Camus, E., Lioyd-Hughes, J., Johnston, M.B.: Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Phys. Rev. B 71(19), 195301 1–7 (2005)Google Scholar
  3. Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105/1-3 (2008)Google Scholar
  4. Chen, P.Y., Farhat, M., Askarpour, A.N., Tymchenko, M., Alu, A.: Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer. J. Optics 16(9), 094008/ 1-9 (2014)Google Scholar
  5. Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J.: A metamaterial solid state terahertz phase modulator. Nat. Photon. 3(3), 148–151 (2009)ADSGoogle Scholar
  6. Chou, H.T., Chang, C.H., Chen, Y.T.: Ferrite circulator integrated phased array antenna module for dual-link beamforming at millimeter frequencies. IEEE Trans. Antennas Propag. 10, 1–9 (2018)Google Scholar
  7. Dhillon, S.S., Vitiello, M.S., Linfield, E.H., Davies, A.G., Hoffmann, M.C., Booske, J., Paoloni, C., Gensch, M., Weightman, P., Williams, G.P., Camus, E.C., Cumming, D.R.S., Simoens, F., Carranza, I.E., Grant, J., Lucyszyn, S., Gonokami, M.K., Konishi, K., Koch, M., Schmuttenmaer, C.A., Cocker, T.L., Huber, R., Markelz, A.G., Taylor, Z.D., Wallace, V.P., Zeitler, J.A., Sibik, J., Korter, T.M., Ellison, B., Rea, S., Goldsmith, P., Cooper, K.B., Appleby, R., Pardo, D., Huggard, P.G., Krozer, V., Shams, H., Fice, M., Renaud, C., Seeds, A., Stohr, A., Naftaly, M., Ridler, N., Clarke, R., Cunningham, J.E., Johnston, M.B.: The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50, 043001/1–49 (2017)Google Scholar
  8. Drysdale, T.D., Walsby, E.D., Cumming, D.R.S.: Measured and simulated performance of a ceramic micromechanical beam steering device at 94 GHz. Appl. Opt. 47(13), 2382–2385 (2008)ADSGoogle Scholar
  9. Froberg, N.M., Hu, B.B., Zhang, X.C., Auston, D.H.: Terahertz radiation from a photoconducting antenna array. IEEE J. Quantum Electron. 28(10), 2291–2301 (1992)ADSGoogle Scholar
  10. Funk, E.E., Lee, C.H.: Free-space power combining and beam steering of ultra-wideband radiation using an array of laser-triggered antennas. IEEE Trans. Microw. Theory Tech. 44(11), 2039–2044 (1996)ADSGoogle Scholar
  11. Ghasr, M.T., Pommerenke, D., Case, J.T., McClanahan, A., Aflaki-Bbeni, A., Abou-Khousa, M., Kharkovsky, S., Guinn, K., Paulis, F.D., Zoughi, R.: Rapid rotary scanner and portable coherent wideband Q-band transceiver for high-resolution millimeter-wave imaging applications. IEEE Trans. Instrum. Meas. 60(1), 186–197 (2008)Google Scholar
  12. Gu, X., Valdes-Garcia, A., Natarajan, A., Sadhu, B., Liu, D., Reynolds, S.K.: W-band scalable phased arrays for imaging and communications. IEEE Commun. Mag. 53(4), 196–204 (2015)Google Scholar
  13. Guzmán-Quirós, R., Weily, A.R., Gómez-Tornero, J.L., Guo, Y.J.: A Fabry-Perot antenna with two-dimensional electronic beam scanning. IEEE Trans. Antenna Propag. 64(4), 1536–1541 (2016)zbMATHADSGoogle Scholar
  14. Hu, B.B., Darrow, J.T., Zhang, X.C., Auston, D.H.: Optically steerable photoconducting antennas. Appl. Phys. Lett. 56(10), 886–888 (1990)ADSGoogle Scholar
  15. Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photon. Rev. 5(1), 124–166 (2011)ADSGoogle Scholar
  16. Jha, K.R., Singh, G., Jyoti, R.: A simple synthesis technique of single-square-loop frequency selective surface. Prog. Electromagn. Res. B 45, 165–185 (2012)Google Scholar
  17. Kamiya, Y., Murakami, Y., Chojo, W., Fujise, M.: An electro-optic BFN for array antenna beam forming. IEICE Trans. Electron. 78(8), 1090–1094 (1995)Google Scholar
  18. Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)ADSGoogle Scholar
  19. Kersting, R., Strasser, G., Unterrainer, K.: Terahertz phase modulator. Electron. Lett. 36(13), 1156–1158 (2000)Google Scholar
  20. Khiabani, N., Huang, Y., Shen, Y.-C.: Discussions on the main parameters of THz photoconductive antennas as emitters. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, April 10–15, pp. 462–466, 2011Google Scholar
  21. Kim, K.H. Kim, H., Kim, D.Y., Kim, S.K., Chun, S.H., Park, S.J., Jang, S.M., Chong, M.K. Jin, H.S.: Development of planar active phased array antenna for detecting and tracking radar. In: Proceedings of IEEE Radar Conference (RadarConf’18), Oklahoma City, April 23–27, pp. 0100–0103, 2018Google Scholar
  22. Libon, I.H., Baumgärtner, S., Hempel, M., Hecker, N.E., Feldmann, J., Koch, M., Dawson, P.: An optically controllable terahertz filter. Appl. Phys. Lett. 76(20), 2821–2823 (2000)ADSGoogle Scholar
  23. Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95(8), 1514–1526 (2007)Google Scholar
  24. Liu, J., Fan, W.-H., Chen, X., Xie, J.: Identification of high explosive RDX using terahertz imaging and spectral fingerprints. J. Phys: Conf. Ser. 680(1), 1–9 (2016)Google Scholar
  25. Maki, K., Otani, C.: Terahertz beam steering and frequency tuning by using the spatial dispersion of ultrafast laser pulses. Opt. Express 16(14), 10158–10169 (2008)ADSGoogle Scholar
  26. Malhotra, I. Jha, K.R., Singh, G.: Design of highly directive lens-less photoconductive dipole antenna array with frequency selective surface for terahertz imaging applications. Opt. Int. J. Light Electron Opt. 173, 206–219 (2018)Google Scholar
  27. Malhotra, I., Thakur, P., Pandit, S., Jha, K.R., Singh, G.: Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model. Opt. Quantum Electron. 49, 334/1–23 (2017)Google Scholar
  28. Malhotra, I.: Analysis, design and characterization of small-gap photoconductive dipole antenna for terahertz imaging applications, Ph.D. thesis, Jaypee University of Information Technology, Solan (2017)Google Scholar
  29. Malhotra, I., Jha, K.R., Singh, G.: Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Opt. Commun. 397, 129–139 (2017)ADSGoogle Scholar
  30. Malhotra, I., Jha, K.R., Singh, G.: Terahertz antenna technology for imaging applications—a technical review. Int. J. Microw. Wireless Technol. 10(3), 271–290 (2018a)Google Scholar
  31. Malhotra, I., Jha, K.R., Singh, G.: Design of highly directive terahertz photoconductive dipole antenna using frequency selective surface for sensing and imaging application. J. Comput. Electron. 17(4), 1721–1740 (2018b)Google Scholar
  32. Mittleman, D.M.: Twenty years of terahertz imaging. Opt. Express 26(8), 9417–9431 (2018)ADSGoogle Scholar
  33. Moallem, M., Sarabandi, K.: Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications. IEEE Trans. Terahertz Sci. Technol. 2(3), 333–339 (2012)ADSGoogle Scholar
  34. Monnai, Y., Altmann, K., Jansen, C., Hillmer, H., Koch, M., Shinoda, H.: Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21(2), 2347–2354 (2013)ADSGoogle Scholar
  35. Munk, B.A.: Frequency Selective Surfaces Theory and Design. Wiley, New York (2000)Google Scholar
  36. Nallappan, K., Li J., Guerboukha, H., Markov, A., Petrov, B., Morris, D., and Skorobogatiy, M.: A dynamic,ally reconfigurable terahertz array antenna for 2D-imaging applications, In: Proceedings of IEEE Photonics North (PN), Ottawa, June 6-8, pp. 1–4, 2017Google Scholar
  37. Rahmati, E., Boroujeni, M.A.: Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate. Opt. Commun. 412, 74–79 (2018)ADSGoogle Scholar
  38. Reed, J.A.: Frequency selective surfaces with multiple periodic elements, Ph.D. thesis, University of Texas Dallas (1997)Google Scholar
  39. Rivera-Lavado, A., García-Muñoz, L.E., Generalov, A., Lioubtchenko, D., Abdalmalak, K.A., Llorente-Romano, S., García-Lampérez, A., Segovia-Vargas, D., Räisänen, A.V.: Design of a dielectric rod waveguide antenna array for millimeter waves. J. Infrared Millimeter Terahertz Waves 38(1), 33–46 (2017)Google Scholar
  40. Sengupta, K., Hajimiri, A.: A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012)ADSGoogle Scholar
  41. Sheen, D.M., McMakin, D.L., Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001)ADSGoogle Scholar
  42. Tran, H.P., Gumbmann, F., Weinzierl, J., Schmidt, L.P.: A fast scanning w-band system for advanced millimetre-wave short range imaging applications. In: Proceedings of the 3rd European Radar Conference, (EURAD 2006), September 13–15, Manchester, pp. 146–149Google Scholar
  43. Uematsu, K., Maki, K., Otani, C.: Terahertz beam steering using interference of femtosecond optical pulses. Opt. Express 20(20), 22914–22921 (2012)ADSGoogle Scholar
  44. Uzunkol, M., Gurbuz, O.D., Golcuk, F., Rebeiz, G.M.: A 0.32 THz SiGe 4×4 imaging array using high-efficiency on-chip antennas. IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013)ADSGoogle Scholar
  45. Valkonen, R.: Compact 28-GHz phased array antenna for 5G access, In: Proceedings of IEEE/MTT-S International Microwave Symposium (IMS), Philadelphia, June 10–15, pp. 1334–1337, 2018Google Scholar
  46. Schiessl, A., Ahmed, S.S., Genghammer, A., Schmidt, L.P.: Temperature sensitivity of large digital-beamforming multistatic mm-wave imaging. In: Proceedings of the IEEE MTT-S International Microwave Symposium Digest (IMS), June 2–7, Seattle, pp. 1–3Google Scholar
  47. Yilmaz, A.E., Kuzuoglu, M.: Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering 18(2), 95–102 (2009)Google Scholar
  48. Yu, B., Yang, K., Desmond Sim C.Y., Yang, G.: A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans. Antennas Propag. 66(1), 462–466 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJaypee University of Information TechnologySolanIndia
  2. 2.School of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia
  3. 3.Department of Electrical and Electronics Engineering, Auckland Park Kingsway CampusUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations