Advertisement

Design considerations of highly efficient D-shaped plasmonic biosensor

  • Mohammad Y. Azab
  • Mohamed Farhat. O. HameedEmail author
  • A. M. Heikal
  • Mohamed A. Swillam
  • S. S. A. ObayyaEmail author
Article
  • 85 Downloads
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling

Abstract

Design considerations of photonic crystal fiber (PCF) surface plasmon biosensor with high sensitivity to monitor glucose concentration is reported and studied. Based on a well-known large mode area (LMA) single mode PCF, two different configurations have been studied to investigate the impact of the etching process on the biosensor sensitivity. Furthermore, the possibility of infiltrating one hole by a plasmonic material to increases the biosensor sensitivity is studied. A full vectorial finite element method (FVFEM) is used to carry out the analysis of the reported biosensor. In addition, the geometrical parameters of the suggested biosensors have been optimized to obtain the highest sensitivity. The suggested biosensor based on a D-shaped PCF with plasmonic rod achieves sensitivity as high as 13,600 nm/RIU with corresponding resolution of \( 7.35 \times 10^{ - 6} \;{\text{RIU}} \).The analysis also reveals that the proposed biosensor has a linear performance which is needed practically. Therefore, the reported biosensor has advantages in terms of fabrication feasibility and high linear sensitivity.

Keywords

Optical sensing and sensors Photonic crystal fibers Surface plasmons 

Notes

Acknowledgements

The authors would like to thank the “Science & Technology Development Fund” (STDF) in Egypt for financial support under Project Number 10563.

References

  1. Abdel-Latif, G.Y., Hameed, M.F.O., Hussein, M., Razzak, M.A., Obayya, S.S.A.: Electrical characteristics of funnel-shaped silicon nanowire solar cells. J. Photonics Energy 7(4), 047501–01–047501–15 (2017)Google Scholar
  2. Akowuah, E.K., Gorman, T., Ademgil, H., Haxha S.: A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver. In: IEEE 4th International Conference on Adaptive Science and Technology (ICAST), pp. 121–125 (2012a)Google Scholar
  3. Akowuah, E.K., Gorman, T., Ademgil, H., Haxha, S., Robinson, G.K., Oliver, J.V.: Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012b)ADSGoogle Scholar
  4. Akowuah E.K., Gorman T., Ademgil, H., Haxha S., Robinson G., Oliver J.: A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment. In: Photonic Crystals—Innovative Systems, Lasers and Waveguides, Dr. Alessandro Massaro (Ed.), ISBN: 978-953-51-0416-2 (2012c)Google Scholar
  5. Areed, N.F.F., Hameed, M.F.O., Obayya, S.S.A.: Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quantum Electron. 49(1), 1–12 (2016)Google Scholar
  6. Azab, M.Y., Hameed, M.F.O., Obayya, S.S.A.: Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers. Opt. Quant. Electron. 49(2), 1–17 (2017)Google Scholar
  7. Azab, M.Y., Hameed, M.F.O., Nasr, A.M., Obayya, S.S.A.: Multifunctional Plasmonic Photonic Crystal Fiber Biosensors. In: Hameed, M., Obayya, S. (eds.) Computational Photonic Sensors. Springer, Cham (2019)Google Scholar
  8. Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 1–11 (2016)Google Scholar
  9. COMSOL Multiphysics. http://www.comsol.com
  10. Cunningham, B., Qiu, J., Lin, B., Li, P., Pepper, J.: A plastic colorimetric resonant optical biosensor for multi parallel detection of label-free biochemical interactions. Sensors 85(3), 219–226 (2002)Google Scholar
  11. El-Toukhy, Y.M., Hussein, M., Hameed, M.F.O., Heikal, A.M., Abd-Elrazzak, M.M.: Optimized tapered dipole nanoantenna as efficient energy harvester. Opt. Express 24(14), A1107–A1122 (2016)ADSGoogle Scholar
  12. Ganjoo, A., Jain, H., Yub, C., Irudayaraj, J., Pantano, C.G.: Detection and fingerprinting of pathogens: mid-IR biosensor using amorphous chalcogenide films. J. Non-Crystall. Solids 354, 2757–2762 (2008)ADSGoogle Scholar
  13. Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Multiplexer–demultiplexer based on nematic liquid crystal photonic crystal fiber coupler. Opt. Quant. Electron. 41(4), 315–326 (2009)Google Scholar
  14. Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photonics Technol. Lett. 22(3), 188–190 (2010)ADSGoogle Scholar
  15. Hameed, M.F.O., Abdelrazzak, M., Obayya, S.S.A.: Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter. J. Lightwave Technol. 31(1), 81–86 (2013)ADSGoogle Scholar
  16. Hameed, M.F.O., Balat, R.T., Heikal, A.M., Abo-Elkhier, M.M., el Maaty, M.I.A.: Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer–demultiplexer. IEEE Photonics J. 7(5), 1–1 (2015a)Google Scholar
  17. Hameed, M.F.O., Azab, M.Y., Heikal, A.M., El Hefnawy, S.M., Obayya, S.S.A.: Highly Sensitive Plasmonic Photonic Crystal Temperature Sensor Filled With Liquid Crystal. IEEE PTL 28, 59–62 (2015b)Google Scholar
  18. Hameed, M.F.O., Alrayk, Y.K.A., Obayya, S.S.A.: Self-Calibration Highly Sensitive Photonic Crystal Fiber Biosensor. IEEE Photonics J. 8(3), 1–12 (2016a)Google Scholar
  19. Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., El Deeb, W.S., Obayya, S.S.A.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10(4), 46016–1–46016-14 (2016b)Google Scholar
  20. Hassani, A., Skorobogatiy, M.: Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006)ADSGoogle Scholar
  21. Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A.: Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)ADSGoogle Scholar
  22. Heikal, A.M., Hussain, F.F.K., Hameed, M.F.O., Obayya, S.S.A.: Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)ADSGoogle Scholar
  23. Hussain, F.F.K., Heikal, A.M., Hameed, M.F.O., El-Azab, J., Abdelaziz, W.S., Obayya, S.S.A.: Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quantum Electron. 50(6), 474–482 (2014)Google Scholar
  24. Hussein, M., Areed, N.F.F., Hameed, M.F.O., Obayya, S.S.A.: Design of flower-shaped dipole nano-antenna for energy harvesting. IET Optoelectron. 8(4), 167–173 (2014)Google Scholar
  25. Hussein, M., Hameed, M.F.O., Obayya, S.S.A., Swillam, M.A.: Effective modelling of silicon nanowire solar cells. In: 2017 International Applied Computational Electromagnetics Society Symposium—Italy, ACES (2017)Google Scholar
  26. Lai, J.L., Lin, R.S., Tsai, S.C., Huang, S.Y.: Near-Infrared optics bio-sensor used in body-fat measurement. In: ICASI (2016)Google Scholar
  27. Lee H.W.: Plasmonic photonic crystal fiber, Ph.D. dissertation, Max Plank Inst. Sci. Light, Erlangen, Germany (2012)Google Scholar
  28. Leon-Saval, S.G., Birks, T.A., Joly, N.Y., George, A.K., Wadsworth, W.J., Kakarantzas, G., Russell, P.S.: Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)ADSGoogle Scholar
  29. Luan, N., Wang, R., Lv, W., Yao, J.: Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015)ADSGoogle Scholar
  30. Mizaikoff, B.: Peer reviewed: mid-IR fiber-optic sensors. Anal. Chem. A 75, 258A–267A (2003)Google Scholar
  31. Obayya, S.S.A., Hameed, M.F.O., Areed, N.F.F.: Computational liquid crystal photonics: fundamentals, modelling and applications. Wiley, New York (2016)Google Scholar
  32. Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefringent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6(4), 1–11 (2014)Google Scholar
  33. Qin, W., Li, S., Yao, Y., Xin, X., Xue, J.: Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Laser Eng. 58, 1–8 (2014)ADSGoogle Scholar
  34. Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Shee, Y.G., Ahmed, R., Chow, D.M., Adikan, F.R.M.: Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: a Practical Sensing Approach. IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015)ADSGoogle Scholar
  35. Tan, Z., Li, X., Chen, Y., Fan, P.: Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9, 167–173 (2014)Google Scholar
  36. Wang, G., Li, S., An, G., Wang, X., Zhao, Y., Zhang, W., Chen, H.: Chen: highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance. Opt. Quant. Electron. 48(1), 1–9 (2016)Google Scholar
  37. Wu, T., Shao, Y., Wang, Y., Cao, S., Cao, W., Zhang, F., Liao, C., He, J., Huang, Y., Hou, M., Wang, Y.: Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 25(17), 20313–20322 (2017)ADSGoogle Scholar
  38. Yeh, Y.-L.: Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt. Lasers Eng. 46, 666–670 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Y. Azab
    • 1
  • Mohamed Farhat. O. Hameed
    • 1
    • 2
    • 3
    Email author
  • A. M. Heikal
    • 2
    • 4
  • Mohamed A. Swillam
    • 5
  • S. S. A. Obayya
    • 2
    • 4
    Email author
  1. 1.Mathematics and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  2. 2.Centre for Photonics and Smart MaterialsZewail City of Science and Technology6th of October CityEgypt
  3. 3.Nanotechnology Engineering Program, University of Science and TechnologyZewail City of Science and Technology6th of October CityEgypt
  4. 4.Electronics and Communication Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  5. 5.Department of PhysicsAmerican University in CairoNew CairoEgypt

Personalised recommendations