Advertisement

Multi-wavelength Brillouin erbium-doped fiber laser sensor with high tunable temperature sensing coefficient

  • Zhou Xuefang
  • Li Zengyang
  • Ge Chaoqun
  • Fan BingEmail author
  • Wang Tianshu
Article
  • 29 Downloads

Abstract

A multi-wavelength Brillouin erbium-doped fiber laser sensor is proposed and investigated experimentally. It is a linear laser cavity multi-wavelength fiber laser, formed by fixing two high-reflectivity Sangac loop mirrors at both ends. We investigate the laser system output characteristics and test the sensor performance for different temperature. Temperature/humidity and reliable linear-cavity fiber laser sensing operation were successfully achieved. Experimental results show that the temperature sensitivity is \(27.15\) MHz/ °C and the measurement error caused by frequency drift is about \(\pm 0. 2 8 5\) °C.

Keywords

Temperature sensor Multi-wavelength Brillouin fiber laser Fiber-laser sensor High-order Stokes wavelength 

Notes

Acknowledgements

This work was supported by Zhejiang Province Science and Technology Plan Projects (No. 2017C31067).

References

  1. Al-Alimi, A.W., Yaacob, M.H., Abas, A.F.: Nonlinear fiber loop mirror optimization to enhance the performance of multiwavelength Brillouin/Erbium-doped fiber laser. Photon. J. IEEE 6(6), 1–10 (2014)CrossRefGoogle Scholar
  2. Hu, K., Kabakova, I.V., Lefrancois, S., et al.: Hybrid Brillouin/thulium multiwavelength fiber laser with switchable single- and double-Brillouin-frequency spacing. Opt. Exp. 22(26), 31884–31892 (2014)CrossRefADSGoogle Scholar
  3. Iezzi, V.L., Loranger, S., Marois, M., et al.: High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber. Opt. Lett. 39(4), 857–860 (2014)CrossRefADSGoogle Scholar
  4. Lalam, N., Ng, W.P., Dai, X., et al.: Characterization of Brillouin frequency shift in Brillouin optical time domain analysis (BOTDA). In: European Conference on Networks and Optical Communications. IEEE, pp. 1–4 (2015)Google Scholar
  5. Liu, Y., Zhang, M., Wang, P., et al.: Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution. IEEE Photon. J. 7(5), 1–9 (2017)CrossRefGoogle Scholar
  6. Minardo, A., Coscetta, A., Catalano, E., et al.: Simultaneous strain and temperature measurements by dual wavelength Brillouin sensors. IEEE Sens. J. 17(12), 3714–3719 (2017)CrossRefADSGoogle Scholar
  7. Motil, A., Bergman, A., Tur, M.: State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 78, 81–103 (2016)CrossRefADSGoogle Scholar
  8. Qian, L., Fen, D., Xie, H., et al.: A novel tunable multi-wavelength Brillouin fiber laser with switchable frequency spacing. Opt. Commun. 340, 74–79 (2015)CrossRefADSGoogle Scholar
  9. Xie, H., Sun, J., Feng, D., et al.: Compact multiwavelength Brillouin fiber laser by utilizing EDF as hybrid gain media. IEEE Photon. J. 7(6), 1–10 (2015)CrossRefGoogle Scholar
  10. Xu, R., Zhang, X.: Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity. IEEE Photon. J. 7(3), 1–8 (2017)CrossRefGoogle Scholar
  11. Yeh, C.H., Shih, F.Y., Chen, C.T., et al.: Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode. Laser Phys. Lett. 5(3), 210–212 (2010)CrossRefGoogle Scholar
  12. Yuan, Y., Yao, Y., Yi, M., et al.: Multiwavelength fiber laser employing a nonlinear Brillouin optical loop mirror: experimental and numerical studies. Opt. Exp. 22(13), 15352–15363 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Communication EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.National and Local Joint Engineering Research Center of Optoelectronics TechnologyChangchun University of Science and TechnologyChangchunChina

Personalised recommendations