Advertisement

Particle filter-based modulation domain infrared targets tracking

  • Xiaofang Kong
  • Qian ChenEmail author
  • Guohua Gu
  • Weixian Qian
  • Kan Ren
  • Jonathan Williams
Article
  • 26 Downloads

Abstract

Faced with problems of low contrast, poor SNR, and relatively complicated tracking environment, stable infrared target tracking is worth researching for its many potential applications. In this paper, instead of traditional target tracking in the pixel domain, we propose a sampling importance resampling (SIR) particle filter method with indirect velocity measurements to track infrared targets in the modulation domain. The dominant amplitude modulation (AM) features used for tracking is extracted by decomposing the input image using an 18-channel Gabor filter bank followed by the application of the dominant component analysis approach. The dominant AM modulation features provide a significant partial texture characteristic of the target which can be separated from background with better discrimination. To take advantage of observed kinematics, we utilize the augmented state vector with indirect velocity information via combining the measurements of velocity in adjacent frames to the SIR particle filter framework, which weakens weights of particles with bad velocity estimates but still having association with the cluttered background or other moving objects. A dynamic template update strategy is also provided to prevent the tracker from appearance model drift. Experiments indicate that the proposed method is effective for raising the tracking accuracy compared with other tracking methods.

Keywords

Infrared target tracking SIR particle filter Modulation domain AM features Dominant component analysis Augmented state vector 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 61701233), and China Scholarship. The author would also like to thank Professor Joseph Havlicek and Doctor Jonathan Williams of the University of Oklahoma for the great help of the research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest concerning the content of this study.

References

  1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRefADSGoogle Scholar
  2. Asha, C.S., Narasimhadhan, A.V.: Robust infrared target tracking using discriminative and generative approaches. Infrared Phys. Technol. 85, 114–127 (2017)CrossRefADSGoogle Scholar
  3. Bello, J.C.F., Havlicek, J.P.: A state vector augmentation technique for incorporating indirect velocity information into the likelihood function of the sir video target tracking filter. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). IEEE (2016)Google Scholar
  4. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)CrossRefGoogle Scholar
  5. Cui, Z., Yang, J., Jiang, S., et al.: Robust spatio-temporal context for infrared target tracking. Infrared Phys. Technol. 91, 263–277 (2018)CrossRefADSGoogle Scholar
  6. Gong, J.L., Xin, H.E., Wei, Z.H., et al.: Multiple infrared target tracking using improved auxiliary particle filter. Opt. Precis. Eng. 20(2), 413–421 (2012)CrossRefGoogle Scholar
  7. Han, T.X., Ming, L., Thomas, S.H.: A drifting-proof framework for tracking and online appearance learning. IEEE Workshop on Applications of Computer Vision, WACV’07. IEEE (2007)Google Scholar
  8. Havlicek, J.P., Bovik, A., Chen, D.: AM–FM image modeling and Gabor analysis. Opt. Eng. N. Y. Marcel Dekker Inc. 64, 343–386 (1999)Google Scholar
  9. Havlicek, J.P., Tay, P.C., Bovik, A.C.: AM–FM image models: fundamental techniques and emerging trends. In: Handbook of Image and Video Processing, 2nd edn (2005)Google Scholar
  10. Huang, Q., Yang, J.: A multistage target tracker in IR image sequences. Infrared Phys. Technol. 65(7), 122–128 (2014)CrossRefADSGoogle Scholar
  11. Jenkins, M.D., et al.: Selective sampling importance resampling particle filter tracking with multibag subspace restoration. IEEE Trans. Cybern. 48, 264–276 (2016)CrossRefGoogle Scholar
  12. King, F.: Hilbert Transforms. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  13. Kyriakides, I.: Target tracking using adaptive compressive sensing and processing. Signal Proc. 127(C), 44–55 (2016)CrossRefGoogle Scholar
  14. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking: part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003)CrossRefADSGoogle Scholar
  15. Liu, W., et al.: Leveraging long-term predictions and online learning in agent-based multiple person tracking. IEEE Trans. Circuits Syst. Video Technol. 25(3), 399–410 (2015)CrossRefGoogle Scholar
  16. Matthews, L., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810–815 (2004)CrossRefGoogle Scholar
  17. Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: IEEE International Conference on Computer Vision, DBLP, pp. 1436–1443 (2009)Google Scholar
  18. Nguyen, C.T., Havlicek, J.P.: Modulation domain features for discriminating infrared targets and backgrounds. In: IEEE International Conference on Image Processing. IEEE (2006)Google Scholar
  19. Nguyen, C.T., Havlicek, J.P., Yeary, M.: Modulation domain template tracking. IEEE Conference on Computer Vision and Pattern Recognition, CVPR’07. IEEE (2007)Google Scholar
  20. Nguyen, C.T., Havlicek, J.P., Fan, G., et al.: Robust dual-band MWIR/LWIR infrared target tracking. In: Asilomar Conference on Signals, Systems and Computers, pp. 78–83. IEEE (2015)Google Scholar
  21. Pan, J., Bo, H.: Robust object tracking against template drift. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 3. IEEE (2007)Google Scholar
  22. Ponsa, D., López, A.M.: Variance reduction techniques in particle-based visual contour tracking. Pattern Recogn. 42(11), 2372–2391 (2009)CrossRefGoogle Scholar
  23. Prakash, R.S., Aravind, R.: Modulation-domain particle filter for template tracking. In: 19th International Conference on Pattern Recognition. ICPR 2008. IEEE, 2008Google Scholar
  24. Ross, D.A., Lim, J., Lin, R.S., et al.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)CrossRefGoogle Scholar
  25. Venkataraman, V., Fan, G., Havlicek, J.P., et al.: Adaptive kalman filtering for histogram-based appearance learning in infrared imagery. IEEE Trans. Image Process. 21(11), 4622–4635 (2012)MathSciNetCrossRefADSGoogle Scholar
  26. Wang, Z., Zhang, K.D., Wu, Y., et al.: Tracking dim target in infrared imagery using the trust region embedded particle filter. In: International Conference on Signal Processing. IEEE (2006)Google Scholar
  27. Wang, Q., Chen, F., Xu, W., et al.: Online discriminative object tracking with local sparse representation. IEEE Workshop on the Applications of Computer Vision. IEEE Computer Society (2012)Google Scholar
  28. Wang, F., Zhen, Y., Zhong, B., et al.: Robust infrared target tracking based on particle filter with embedded saliency detection. Inf. Sci. Int. J. 301(C), 215–226 (2015)Google Scholar
  29. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418. IEEE Computer Society (2013)Google Scholar
  30. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 1–45 (2006)CrossRefGoogle Scholar
  31. Zhang, T., Liu, S., Ahuja, N., et al.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis. 111(2), 171–190 (2015)CrossRefGoogle Scholar
  32. Zhang, X., Ren, K., Wan, M., et al.: Infrared small target tracking based on sample constrained particle filtering and sparse representation. Infrared Phys. Technol. 87, 72–82 (2017)CrossRefADSGoogle Scholar
  33. Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Process. 13(11), 1491–1506 (2004)CrossRefGoogle Scholar
  34. Zhou, T., Yao, L., Di, H.: Locality-constrained collaborative model for robust visual tracking. IEEE Trans. Circuits Syst. Video Technol. 27(2), 313–325 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofang Kong
    • 1
  • Qian Chen
    • 1
    Email author
  • Guohua Gu
    • 1
  • Weixian Qian
    • 1
  • Kan Ren
    • 1
  • Jonathan Williams
    • 2
  1. 1.Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electrical and Computer EngineeringUniversity of OklahomaNormanUSA

Personalised recommendations