Spatial characteristics of the truncated circular Airyprime beam

  • Abdelhalim BencheikhEmail author


The circular Airyprime (CiAiP) beam is introduced in this paper. The spatial proprieties are well discussed and compared to the first order radial Laguerre–Gaussian beam LG10. The width, the divergence and the beam propagation factor are calculated based on the second order moments method, the latter is equal to M2 = 3.08. The free propagating CiAiP beam exhibits an unexpected non-diffracting character, it doesn’t spread through propagation. The on-axis intensity of the focused circular Airyprime beam is also explored, it exhibits a dual focus corresponding to two on-axis intensity maxima, it could be modified under diffraction using a hard circular aperture. The latter presents a cheap beam shaper, it is shown that a hard aperture could transform an input circular Airyprime beam into perfect ringed beam, a perfect Gaussian beam and a top hat beam. By combining the axial and the transversal behavior of a truncated circular Airyprime beam for a particular aperture diameter a perfect cylindrical optical bottle beam is obtained. The present work could be of big interest in the field of structured light.


Circular Airyprime beam Propagation and focusing Beam shaping 


  1. Abramochkin, E., Razueva, E.: Product of three Airy beams. Opt. Lett. 36, 3732–3736 (2011)CrossRefADSGoogle Scholar
  2. Ahluwalia, B., Yuan, V., Tao, S.: Generation of self-imaged optical bottle beams. Opt. Commun. 238, 177–184 (2004)CrossRefADSGoogle Scholar
  3. Arlt, J., Padgett, M.: Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000)CrossRefADSGoogle Scholar
  4. Bandres, M.A., Gutierrez, J.C.: Airy–Gauss beams and their transformation by paraxial optical systems. Opt. Express 15, 16719–16728 (2007)CrossRefADSGoogle Scholar
  5. Carter, W.H.: Spot size and divergence for Hermite Gaussian beams of any order. Appl. Opt. 19, 1027–1029 (1980)CrossRefADSGoogle Scholar
  6. Champagne, Y.: Second-moment approach to the time-averaged spatial characterization of multiple-transverse-mode laser beams. J. Opt. Soc. Am. A 12, 1707–1717 (1995)CrossRefADSGoogle Scholar
  7. Collins Jr., S.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. A 60, 1168–1177 (1970)CrossRefADSGoogle Scholar
  8. Courvoisier, F., Stoian, R., Couairon, A.: Ultrafast laser micro-and nano-processing with nondiffractinf and curved beams. Opt. Laser Technol. 80, 125–137 (2016)CrossRefADSGoogle Scholar
  9. Deng, D.: Generalized M 2 factor of hollow Gaussian beams through a hard-edge circular aperture. Phys. Lett. A 341, 352–356 (2005)CrossRefADSGoogle Scholar
  10. Deng, H., Yuan, L.: Two-dimendionnel Airy-like beam generation by coupling waveguides. J. Opt. Soc. Am. A 30, 1404–1407 (2013)CrossRefADSGoogle Scholar
  11. Deng, H., Yuan, Y., Yuan, L.: Two-dimensional Airy-like beam generation by coupling waveguides. Opt. Lett. 41, 824–828 (2016)CrossRefADSGoogle Scholar
  12. Efremidis, N.K., Christodoulides, D.N.: Abruptly autofocusing waves. Opt. Lett. 35, 4045–4047 (2010)CrossRefADSGoogle Scholar
  13. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A., Arie, A.: Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009)CrossRefADSGoogle Scholar
  14. Gutierrez-Vega, J.C., Iturbe-Castillo, M.D., Chavez-Cerda, S.: Alternative formulation for invariant optical fields: Mathieu beam. Opt. Lett. 25, 1493–1495 (2000)CrossRefADSGoogle Scholar
  15. Hasnaoui, A., Bencheikh, A., Fromager, M., Cagniot, E., Aït Ameur, K.: Creation of a sharper focus using a rectified TEMp0 beam. Opt. Commun. 284, 1331–1334 (2011)CrossRefADSGoogle Scholar
  16. Hasnaoui, A., Haddadi, S., Fromager, M., Louhibi, D., Harfouche, A., Cagniot, E., Aït, Ameur K.: Transformation of LG10 beam into an optical bottle beam. Laser Phys. 25, 085004–085013 (2015)CrossRefADSGoogle Scholar
  17. Jiang, Y., Zhu, X., Yu, W., Shao, H., Zheng, W., Lu, X.: Propagation characteristics of the modified circular Airy beam. Opt. Express 23, 22847–22853 (2015)CrossRefGoogle Scholar
  18. Li, N., Jiang, Y., Huang, K., Lu, X.: Abruptly autofocusing property of blocked circular Airy beams. OPt. Express 22, 29834–29841 (2014)Google Scholar
  19. Martinez-Herrero, R., Mejéas, P.M.: Second-order spatial characterization of hard-edge diffracted beams. Opt. Lett. 18, 1669–1671 (1993)CrossRefADSGoogle Scholar
  20. Mathis, A., Courvoisier, F., Froehly, L., Furfaro, L., Jacquot, M., Lacourt, P., Dudly, J.: Micromachining along a curve: femto-second laser micromachining of a curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 101, 071110–071112 (2012)CrossRefADSGoogle Scholar
  21. McGloin, D., Spalding, G., Melville, H., Sibbett, W., Dholakia, K.: 3D array of bottle beams. Opt. Commun. 225, 191–193 (2003)CrossRefGoogle Scholar
  22. Mei, Z., Zhao, D.: the generalized beam propagation factor truncated standard and Elegant–Laguerre–Gaussian beams. J. Opt. A: Pure Appl. Opt. 6, 1005–1011 (2004)CrossRefADSGoogle Scholar
  23. Mei, Z., Zhao, D.: Approximate method for the generalized M-factor of rotationally symmetric hard-edged diffracted flattened Gaussian beams. Appl. Opt. 44, 1381–1386 (2005)CrossRefADSGoogle Scholar
  24. Mei, Z., Zhao, D.: Generalized beam propagation factor of hard-edged circular apertured diffracted Bessel–Gaussian beams. Opt. Laser Technol. 39, 1389–1394 (2007)CrossRefADSGoogle Scholar
  25. Mihoubi, K., Bencheikh, A., Manallah, A.: The beam propagation factor M2 of truncated Standard and Elegant–Hermite–Gaussian beams. Opt. Laser Technol. 99, 191–196 (2018)CrossRefADSGoogle Scholar
  26. Phillips, R.L., Andrews, L.C.: Spot size and divergence for Laguerre Gaussian beams of any order. Appl. Opt. 19, 643–644 (1983)CrossRefADSGoogle Scholar
  27. Saghafi, S., Sheppard, C.J.R.: The beam propagation factor for higher order Gaussian beams. Opt. Commun. 153, 207–210 (2008)CrossRefADSGoogle Scholar
  28. Siegman, A.E.: New developments in laser resonators. In: Proceeding of SPIE, pp. 12242–12256 (1990)Google Scholar
  29. Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007)CrossRefADSGoogle Scholar
  30. Siviloglou, G.A., Brokly, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beam. Phys. Rev. Lett. 99, 213901–213904 (2007)CrossRefADSGoogle Scholar
  31. Vallée, O., Manuel, S.: Airy Functions and Applications to Physics. Imperial College Press, London (2010)CrossRefGoogle Scholar
  32. Wang, X., Lu, B.: The beam width of Bessel-modulated Gaussian beams. J. Mod. Opt. 50, 2107–2115 (2003)CrossRefADSGoogle Scholar
  33. Wen, W., Song, K., Dong, Y., Yao, M.: Finite energy Airy–Hermite–Gaussian beam and its paraxial propagation. Opt. Laser Technol. 48, 28–34 (2013)CrossRefADSGoogle Scholar
  34. Xu, Y., Zhou, G., Zhang, L., Ru, G.: Two kinds of Airy-related beams. Laser Phys. 25, 085005–085018 (2015)CrossRefADSGoogle Scholar
  35. Yan, S., Yao, B., Lei, M., Dan, D., Yang, Y., Gao, P.: Virtual source for an Airy beam. Opt. Lett. 37, 4774–4776 (2012)CrossRefADSGoogle Scholar
  36. Zhang, J., Hue, J.: Dual abruptly focus of modulated circular airy beams. IEEE Photonics J. 9, 6500510–6500520 (2016)Google Scholar
  37. Zheng, Z., Zhang, B.F., Chen, H., Ding, J., Wang, H.T.: Optical trapping with focused Airy beams. Appl. Opt. 50, 43–49 (2011)CrossRefADSGoogle Scholar
  38. Zhong, W.P., Belic, M., Zhang, Y.: Three-dimensional localized Airy–Laguerre–Gaussian wave packets in free space. Opt. Express 23, 23867–23876 (2015)CrossRefADSGoogle Scholar
  39. Zhou, G.: Generalized beam propagation factors of truncated partially coherent cosine-Gaussian beam and cosh-Gaussian beams. Opt. Laser Technol. 42, 489–496 (2010)CrossRefADSGoogle Scholar
  40. Zhou, G.: Generalized beam propagation factors of truncated partially coherent cosine-Gaussian beam and cosh-Gaussian beams. Opt. Laser Technol. 44, 1318–1323 (2012)CrossRefADSGoogle Scholar
  41. Zhou, G.: Beam propagation factors and kurtosis parameters of a Lorentz–Gauss vortex beam. J. Opt. Soc. Am. A 31, 1239–1246 (2014)CrossRefADSGoogle Scholar
  42. Zhou, G., Chen, R., Ru, G.: Airyprime beams and their propagation characteristics. Laser Phys. Lett. 12, 025003–025012 (2015)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electromechanics, Faculty of Sciences and TechnologyUniversity of BBABordj Bou ArréridjAlgeria
  2. 2.Applied Optics Laboratory, Institute of Optics and Precision MechanicsSétif 1 UniversitySétifAlgeria

Personalised recommendations