Improvement of crystallinity and luminescence of GaN-based laser diode structure with suppressed curvature variation in active layers

  • Tian Lan
  • Guangzheng Zhou
  • Ying Li
  • Hongyan Yu
  • Shun Yao
  • Zhiyong WangEmail author


The influence of curvature variation on the crystallinity and luminescence of GaN-based blue laser diode (LD) structure is comprehensively investigated during the growth of InGaN/GaN active layers. Compared with InGaN/GaN multiple quantum well (MQWs) grown by the conventional 2-temperature deposition, curvature variation is successfully suppressed and a much gentler deformation from wells to barriers is obtained by employing same-temperature deposition method (STDM). With less curvature fluctuation, the V-pit density of InGaN/GaN MQWs grown on sapphire is effectively decreased from 4.5 × 108/cm2 to 2.8 × 108/cm2 with average root-mean-square roughness of 0.55 nm, while threading dislocation density of the GaN-based LD structures grown on FS-GaN is also reduced from 5.9 × 106/cm2 to 1.6 × 106/cm2. Additionally, an ~ 7 nm redshift in photoluminescence emission for LD structure is achieved, accompanied by a ~ 6 times higher emission intensity. A more uniform distribution of emission wavelength along the radial direction is observed and the full width at half maximum is also narrowed, indicating that the STDM is advantageous to effectively eliminate the negative influence of curvature variation and contribute to fabricating high-performance GaN-based light-emitting diodes and LDs.


InGaN/GaN MQWs Laser diode structure Curvature variation Same-temperature deposition 



The authors gratefully acknowledge the supports of senior engineers Lianhong Kang, Guoliang Dong and Tianbao Zhou from Sino-semiconductor Technologies Co., Ltd.


  1. Aida, H., Lee, D.S., Belousov, M., Sunakawa, K.: Effect of initial bow of sapphire substrate on substrate curvature during InGaN growth stage of light emitting diode epitaxy. Jpn. J. Appl. Phys. 51(51), 012102 (2013)Google Scholar
  2. Belousov, M., Volf, B.: Method and apparatus for measuring the curvature of reflective surfaces. US Patent US7570368 B2 (2009)Google Scholar
  3. Belousov, M., Volf, B., Ramer, J.C., Armour, E.A., Gurary, A.: In situ metrology advances in MOCVD growth of GaN-based materials. J. Cryst. Growth 272(1), 94–99 (2004)ADSCrossRefGoogle Scholar
  4. Brunner, F., Hoffmann, V., Knauer, A., Steimetz, E., Schenk, T., Zettler, J.T., Weyers, M.: Growth optimization during III-nitride multiwafer MOVPE using real-time curvature, reflectance and true temperature measurements. J. Cryst. Growth 298(1), 202–206 (2007)ADSCrossRefGoogle Scholar
  5. Cheng, K., Degroote, S., Leys, M., Zhang, L.Y., Derluyn, J., Germain, M., Borghs, G.: In situ bow monitoring: towards uniform blue and green InGaN/GaN quantum well structures grown on 100 mm sapphire substrates by MOVPE. Phys. Status Solidi (c) 7(7–8), 2082–2084 (2010)ADSCrossRefGoogle Scholar
  6. Cheng, L., Wu, S., Xia, C., Chen, H.: Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition. J. Appl. Phys. 118(10), 103103 (2015)Google Scholar
  7. Gian, W., Skowronski, M., Rohrer, G.S.: Structural defects and their relationship to nucleation of GaN thin films. Mrs Proc. 423, 475–486 (1996)CrossRefGoogle Scholar
  8. Hoffmann, V., Knauer, A., Brunner, C., Einfeldt, S., Weyers, M., Tränkle, G., Haberland, K., Zettler, J.T., Kneissl, M.: Uniformity of the wafer surface temperature during MOVPE growth of GaN-based laser diode structures on GaN and sapphire substrate. J. Cryst. Growth 315(1), 5–9 (2011). ADSCrossRefGoogle Scholar
  9. Kamp, M.: Solutions for heteroepitaxial growth of GaN and their impact on devices. Opt. Quant. Electron. 32(3), 227–248 (2000). CrossRefGoogle Scholar
  10. Kim, I.-H., Park, H.-S., Park, Y.-J., Kim, T.: Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films. Appl. Phys. Lett. 73(12), 1634–1636 (1998). ADSCrossRefGoogle Scholar
  11. Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., Manabe, K.: Thermal stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys. 77(9), 4389–4392 (1995). ADSCrossRefGoogle Scholar
  12. Krost, A., Dadgar, A., Strassburger, G., Clos, R.: GaN-based epitaxy on silicon: stress measurements. Phys. Status Solidi (a) 200(1), 26–35 (2003)ADSCrossRefGoogle Scholar
  13. Krost, A., Schulze, F., Dadgar, A., Strassburger, G., Haberland, K., Zettler, T.: Simultaneous measurement of wafer curvature and true temperature during metalorganic growth of group-III nitrides on silicon and sapphire. Phys. Status Solidi (b) 242(13), 2570–2574 (2005)ADSCrossRefGoogle Scholar
  14. Liu, J., Zhang, L., Li, D., Zhou, K., Cheng, Y., Zhou, W., Tian, A., Ikeda, M., Zhang, S., Yang, H.: GaN-based blue laser diodes with 2.2 W of light output power under continuous-wave operation. IEEE Photonics Technol. Lett. (99), 1–1 (2017)Google Scholar
  15. Meneghesso, G., Meneghini, M., Rossetto, I., Bisi, D., Stoffels, S., Van Hove, M., Decoutere, S., Zanoni, E.: Reliability and parasitic issues in GaN-based power HEMTs: a review. Semiconductor Sci. Technol. 31(9), 093004 (2016)Google Scholar
  16. Mickevičius, J., Dobrovolskas, D., Aleksiejūnas, R., Nomeika, K., Grinys, T., Kadys, A., Tamulaitis, G.: Influence of growth temperature on carrier localization in InGaN/GaN MQWs with strongly redshifted emission band. J. Cryst. Growth 459, 173–177 (2017)ADSCrossRefGoogle Scholar
  17. Mukai, T., Yamada, M., Nakamura, S.: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38(7A), 3976–3981 (1999)ADSCrossRefGoogle Scholar
  18. Nakamura, S.: The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998)CrossRefGoogle Scholar
  19. Olaizola, S.M., Pendlebury, S.T., O’Neill, J.P., Mowbray, D.J., Cullis, A.G., Skolnick, M.S., Parbrook, P.J., Fox, A.M.: Influence of GaN barrier growth temperature on the photoluminescence of InGaN/GaN heterostructures. J. Phys. D Appl. Phys. 35(7), 599–603 (2002)ADSCrossRefGoogle Scholar
  20. Oliver, R.A., Massabuau, F.C.P., Kappers, M.J., Phillips, W.A., Thrush, E.J., Tartan, C.C., Blenkhorn, W.E., Badcock, T.J., Dawson, P., Hopkins, M.A.: The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes. Appl. Phys. Lett. 103(14), 141114 (2013)Google Scholar
  21. Piner, E.L., Behbehani, M.K., El-Masry, N.A., McIntosh, F.G., Roberts, J.C., Boutros, K.S., Bedair, S.M.: Effect of hydrogen on the indium incorporation in InGaN epitaxial films. Appl. Phys. Lett. 70(4), 461–463 (1997). ADSCrossRefGoogle Scholar
  22. Piprek, J.: Analysis of efficiency limitations in high-power InGaN/GaN laser diodes. Opt. Quant. Electron. 48(10), 471–478 (2016). CrossRefGoogle Scholar
  23. Ponce, F.A., Bour, D.P.: Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997). ADSCrossRefGoogle Scholar
  24. Rumyantsev, S.L., Shur, M.S., Levinshtein, M.E.: Materials properties of nitrides: summary. Int. J. High Speed Electron. Syst. 14(01), 1–19 (2004)CrossRefGoogle Scholar
  25. Strauss, U., Koenig, H.: GaInN laser diodes from 440 to 530 nm: a performance study on single-mode and multi-mode R&D designs. Proc. SPIE 10123, 101230A (2017)Google Scholar
  26. Takashi, M., Shingo, M., Takeshi, O., Tomoya, Y., Tokuya, K., Shin-ichi, N., Takashi, M.: 510–515 nm InGaN-based green laser diodes on c-plane GaN substrate. Appl. Phys. Express 2(6), 062201 (2009)Google Scholar
  27. Wang, H., Sodabanlu, H., Daigo, Y., Seino, T., Nakagawa, T., Sugiyama, M.: Improved luminescence from InGaN/GaN MQWs by reducing initial nucleation density using sputtered AlN on sapphire substrate. J. Cryst. Growth 465(1), 12–17 (2017)ADSCrossRefGoogle Scholar
  28. Wang, Y., Pei, X.J., Xing, Z.G., Guo, L.W., Jia, H.Q., Chen, H., Zhou, J.M.: Effects of barrier growth temperature ramp-up time on the photoluminescence of InGaN/GaN quantum wells. J. Appl. Phys. 101(3), 033509 (2007)Google Scholar
  29. Young, N.G., Farrell, R.M., Hu, Y.L., Terao, Y., Iza, M., Keller, S., Denbaars, S.P., Nakamura, S., Speck, J.S.: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates. Appl. Phys. Lett. 103(17), 181374–183516 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Laser EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations