Dispersion behavior of electromagnetic wave near the resonance in 1D magnetized ferrite photonic crystals

  • Yogesh Sharma
  • Surendra PrasadEmail author
  • Vivek Singh


In the present article, we have analyzed the dispersion of electromagnetic wave in the one dimensional magnetized ferrite photonic crystals near the resonance in the permeability of the constituent materials for transverse magnetization in the transverse electric mode. The dispersion relation is obtained by transfer matrix method. It is observed that in the vicinity of resonant frequency, large numbers of oscillations occur in the normalized Bloch wave number. These oscillations in the Bloch wave number are strongly dependent on external magnetic fields, filling factor, and damping constant. The frequency regime of these oscillations is found to be shifted in higher frequency range with increase in the magnitude of the magnetic fields. With increase in the filling factor keeping length of periods fixed, number of oscillations is found to be increased. Near the resonance, effect of incident angle is negligible. It is demonstrated that these nearly equidistant oscillations occurring in the vicinity of resonance may be used for making filter in micro wave frequency range.


Magnetized ferrite photonic crystals Resonant frequency Incident angle Filling factor Dispersion 



The authors are grateful to Dr. A. K. Singh and Dr. D. P. Singh for their continuous encouragement and supports in many ways.


  1. Bi, K., Huang, K., Zeng, L.Y., Zhou, M.H., Wang, Q.M., Wang, Y.G., Lei, M.: Tunable dielectric properties of ferrite-dielectric based metamaterial. PLoS ONE 10, 1–8 (2015)Google Scholar
  2. Dib, N., Omar, A.: Dispersion analysis of multilayer cylindrical transmission lines containing magnetized ferrite substrates. IEEE Trans. Microw. Theory Technol. 50, 1730–1736 (2002)ADSCrossRefGoogle Scholar
  3. Eliseeva, S.V., Ostatochnikov, V.A., Sementsov, D.I.: Effective defect mode suppression in a magneto photonic crystals in the magnetic resonance region. J. Phys: Conf. Ser. (2013). CrossRefGoogle Scholar
  4. Fan, F., Chang, S.-J., Niu, C., Hou, Y., Wang, X.-H.: Magnetically tunable silicon-ferrite photonic crystals for terahertz circulator. Opt. Commun. 285, 3763–3769 (2012)ADSCrossRefGoogle Scholar
  5. Fuller, A.J.: Baden: Ferrite at Microwave Frequency, 2nd edn. New York, Wiley publication (1989)Google Scholar
  6. Gurevich, A.G., Melkov, G.A.: Magnetization Oscillations and Waves, 1st edn. CRC Press, Taylor and Francies (1996)Google Scholar
  7. Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P.B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., Granovsky, A.: Magnetophotonic crystals. J. Phys. D Appl. Phys. 39, R151–R161 (2006)ADSCrossRefGoogle Scholar
  8. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  9. Kato, H., Matsushita, T., Takayama, A., Egawa, M., Nishimura, I.K.M.: Theoretical analysis of optical and magneto-optical properties of one-dimensional magneto photonic crystals. J. Appl. Phys. 93, 3906–3911 (2003)ADSCrossRefGoogle Scholar
  10. Kharchenko, G.O., Tarapov, S.I., Kalmykova, T.V.: Features of the magnetophotonic crystal spectrum in the vicinity of ferromagnetic resonance. J. Magn. Magn. Mater. 373, 30–32 (2015)ADSCrossRefGoogle Scholar
  11. King, T.C., Yang, Y.P., Liou, Y.S., Wu, C.J.: Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Commun. 152(24), 2189–2192 (2012)ADSCrossRefGoogle Scholar
  12. Lee, H.M., Wu, J.C.: Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. J. Appl. Phys. (2010). CrossRefGoogle Scholar
  13. Linden, S., Decker, M., Wegener, M.: Model system for a one-dimensional magnetic photonic crystal. Phys. Rev. Lett. 97, 083902–083906 (2006)ADSCrossRefGoogle Scholar
  14. Liu, J.-X., Yang, H.-Y., Xu, Z.-K., Xie, X., Zhang, Y., Yang, H.-W.: A research of magnetic control ferrite photonic crystal filter. Plasmonics 12, 971–976 (2017)CrossRefGoogle Scholar
  15. Lyubchanskii, I.L., Dadoenkova, N.N., Lyubchanskii, M.I., Shapovalov, E., Lakhtakia, A., Rasing, Th: Magnetic photonic crystals. J. Phys. D Appl. Phys. 36, R277–R287 (2003)CrossRefGoogle Scholar
  16. Márquez-Islas, R., Flores-Desirena, B., Pérez-Rodríguez, F.: Exciton polaritons in one-dimensional metal-semiconductor photonic crystals. J. Nanosci. Nanotechnol. 8(12), 6584–6588 (2008)Google Scholar
  17. Mehdian, H., Mohammadzahery, Z., Hasanbeigi, A.: Optical and magneto-optical properties of plasma-magnetic metamaterials. J. Phys. D Appl. Phys. 48, 305101–305112 (2015)CrossRefGoogle Scholar
  18. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley publication, New York (2014)Google Scholar
  19. Qi, L., Zi, Yang, Lan, F., Gao, X., Shi, Z.: Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals. Phys. Plasmas. 17, 042501–042509 (2010)ADSCrossRefGoogle Scholar
  20. Sigalas, M.M., Soukoulis, C.M., Biswas, R., Ho, K.M.: Effect of the magnetic permeability on photonic band gaps. Phys. Rev. B 56, 959–962 (1997)ADSCrossRefGoogle Scholar
  21. Sodha, M.S., Srivastava, N.C.: Microwave Propagation in Ferrimagnetics, 1st edn. Plenum Press, New York (1981)CrossRefGoogle Scholar
  22. Ubeid, M.F., Shabat, M.M.: Reflected and transmitted powers of electromagnetic waves through a ferrite-dielectric photonic crystal. Int. Lett. Chem. Phys. Astron. 14, 86–98 (2014)CrossRefGoogle Scholar
  23. Wang, F.Y., Li, G.X., Tam, H.L., Cheah, K.W., Zhu, S.N.: Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal. Appl. Phys. Lett. (2008). CrossRefGoogle Scholar
  24. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  25. Yeh, P.: Optical Waves in Layered Media, 2nd edn. New York, Wiley (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsInstitute of Sciences, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations