Advertisement

Generation of an ultrabroadband supercontinuum in the mid-infrared region using dispersion-engineered GeAsSe photonic crystal fiber

  • H. Ahmad
  • M. R. Karim
  • S. Ghosh
  • B. M. A. Rahman
Article

Abstract

An ultrabroadband mid-infrared (MIR) region supercontinuum (SC) is demonstrated numerically through dispersion-engineered traditional chalcogenide (ChG) photonic crystal fiber (PCF). By varying structural parameters pitch (hole to hole spacing) and air-hole diameter to pitch ratio, a number of 10-mm-long hexagonal PCFs made employing GeAsSe ChG glass as a core and air-holes of hexagonal lattice running through their lengths as a cladding are optimized to predict an efficient mid-infrared region SC spectral emission by pumping them using a tunable pump source between 2.9 and 3.3 µm. Simulations are carried out using an ultrashort pump pulse of 100-fs duration with a low pulse peak powers of between 3 and 4 kW into the optimized designs. It is found through numerical analysis that efficient SC spectral broadening with flattened output can be obtained by increasing the PCF pitch rather than increasing the PCF cladding containing air-hole diameter although a larger nonlinear coefficient could be obtained through increasing air-hole diameter of an optimized design. Simulation results show that the SC spectra can be broadened up to 12.2 µm for a certain design with a peak power of 3 kW. Using a peak power of 4 kW, it is possible to obtain SC spectral broadening beyond 14 µm with an optimized design spanning the wavelength range from 1.8 to 14 µm which covers the electromagnetic spectrum required for MIR molecular fingerprint region applications such as sensing and biological imaging.

Keywords

Numerical analysis and approximation Microstructured fiber Ultrafast nonlinear optics Chalcogenide Supercontinuum generation 

Notes

Acknowledgements

Funding for this research was provided by the Ministry of Higher Education (MOHE) under the Grants GA 010-2014 (ULUNG) and the University of Malaya under the Grants RP029B-15 AFR and RU001-2017. We would also like to thank the City, University of London for providing support for this work under the Newton Fund Grant IF026-2018.

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic, San Diego (2013)zbMATHGoogle Scholar
  2. Aggarwal, I.D., Sanghera, J.S.: Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002)Google Scholar
  3. Al-Kadry, A., Amraoui, M.E., Messaddeq, Y., Rochette, M.: Two octaves mid-infrared supercontinuum generation in As2 Se3 microwires. Opt. Exp. 22(25), 31131–31137 (2014)ADSCrossRefGoogle Scholar
  4. Al-Kadry, A., Li, L., Amraoui, M.E., North, T., Messaddeq, Y., Rochette, M.: Broadband supercontinuum generation in all-normal dispersion chalcogenide nanowires. Opt. Lett. 40(20), 4687–4690 (2015)ADSCrossRefGoogle Scholar
  5. Biancalana, F., Skryabin, D.V., Yulin, V.: Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers. Phys. Rev. E 70, 016615 (2004)ADSCrossRefGoogle Scholar
  6. Brilland, L., Smektala, F., Renversez, G., Chartier, T., Troles, J., Nguyen, T.N., Traynor, N., Monteville, A.: Fabrication of complex structures of Holey Fibers in chalcogenide glasses. Opt. Express 14, 1280–1285 (2006)ADSCrossRefGoogle Scholar
  7. Cheng, T., Zhang, L., Xue, X., Deng, D., Suzuki, T., Ohishi, Y.: Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm. Opt. Express 23, 4125–4134 (2015)ADSCrossRefGoogle Scholar
  8. Cheng, T., Nagasak, K., Tuan, T.H., Xue, X., Matsumoto, M., Tezuka, H., Suzuki, T., Ohishi, Y.: Mid-infrared supercontinuum generation spanning 2 to 15.1 µm in a chalcogenide step-index fiber. Opt. Lett. 41, 2117–2120 (2016)ADSCrossRefGoogle Scholar
  9. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 5433, 1537–1539 (1999)CrossRefGoogle Scholar
  10. Domachuk, P., Wolchover, N.A., Cronin-Golomb, M., Wang, A., George, A.K., Cordeiro, C.M.B., Knight, J.C., Omenetto, F.G.: Over 4000 nm bandwidth of Mid-IR supercontinuum generation in subcentimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008)ADSCrossRefGoogle Scholar
  11. Dudley, J.M., Coen, S.: Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002)ADSCrossRefGoogle Scholar
  12. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)ADSCrossRefGoogle Scholar
  13. Dudley, J.M., Taylor, J.R.: Ten years of nonlinear optics in photonic crystal fiber. Nat. Photonics 3, 85–90 (2009)ADSCrossRefGoogle Scholar
  14. Dupont, S., Petersen, C., Thøgersen, J., Agger, C., Bang, O., Keiding, S.R.: IR microscopy utilizing intense supercontinuum light source. Opt. Express 20, 4887–4892 (2012)ADSCrossRefGoogle Scholar
  15. Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)ADSCrossRefGoogle Scholar
  16. Fatome, J., Fortier, C., Nguyen, T.N., Chartier, T., Smektala, F., Messaad, K., Kibler, B., Pitois, S., Gadret, G., Finot, C., Troles, J., Desevedavy, F., Houizot, P., Renversez, G., Brilland, L., Traynor, N.: Linear and nonlinear characterizations of chalcogenide photonic crystal fibers. J. Lightwave Technol. 27(11), 1707–1715 (2009)ADSCrossRefGoogle Scholar
  17. Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25(11), 1938–1948 (2008)ADSCrossRefGoogle Scholar
  18. Gai, X., Han, T., Prasad, A., Madden, S., Choi, D.Y., Wang, R., Bulla, D., LutherDavies, B.: Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Exp. 18(25), 26635–26646 (2010)ADSCrossRefGoogle Scholar
  19. Gao, W., Amraoui, M.E., Liao, M., Kawashima, H., Duan, Z., Deng, D., Cheng, T., Suzuki, T., Messaddeq, Y., Ohishi, Y.: Mid-infrared supecontinuum generation in asuspended-core As2 S3 chalcogenide microstructured optical fiber. Opt. Express 21, 9573–9583 (2013)ADSCrossRefGoogle Scholar
  20. Guo, Z., Yuan, J., Yu, C., Sang, X., Wang, K., Yan, B., Li, L., Kang, S., Kang, X.: Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber. Prog. Electromagn. Res. 48, 67–76 (2016)CrossRefGoogle Scholar
  21. Guo, H., Herkommer, C., Billat, A., Grassani, D., Zhang, C., Pfeiffer, M.H.P., Weng, W., Bres, C.-S., Kippenberg, T.-J.: Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photon. 12, 330–335 (2018)ADSCrossRefGoogle Scholar
  22. Habib, M.S., Markos, C., Bang, O., Bache, M.: Soliton-plasma nonlinear dynamicsin mid-IR gas-filled hollow-core fibers. Opt. Lett. 42, 2232–2235 (2017)ADSCrossRefGoogle Scholar
  23. Hartung, A., Heidt, A.M., Bartelt, H.: Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express 19(8), 7742–7749 (2011)ADSCrossRefGoogle Scholar
  24. Heidt, A.M.: Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27(3), 550–559 (2010)ADSCrossRefGoogle Scholar
  25. Heidt, A.M., Hartung, A., Bosman, G.W., Krok, P., Rohwer, E.G., Schwoerer, H., Bartelt, H.: Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19(4), 3775–3778 (2011)ADSCrossRefGoogle Scholar
  26. Hooper, L.E., Mosley, P.J., Muir, A.C., Wadsworth, W.J., Knight, J.C.: Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19(6), 4902–4907 (2011)ADSCrossRefGoogle Scholar
  27. Hu, J., Menyuk, C.R., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D.: Maximizing the bandwidth of supercontinuum generation in As2 Se3 chalcogenide fibers. Opt. Exp. 18(3), 6722–6739 (2010)ADSCrossRefGoogle Scholar
  28. Hudson, D.D., Mägi, E.C., Judge, A.C., Dekker, S.A., Eggleton, B.J.: Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Opt. Commun. 285, 4660–4669 (2012)ADSCrossRefGoogle Scholar
  29. Hudson, D.D., Antipov, S., Li, L., Alamgir, I., Hu, T., El-Amraoui, M., Messaddeq, Y., Rochette, M., Jackson, S.D., Fuerbach, A.: Toward all-fiber supercontinuum spanning the mid-infrared. Optica 4, 1163–1166 (2017)CrossRefGoogle Scholar
  30. Karim, M.R., Rahman, B.M.A., Agrawal, G.P.: Dispersion engineered Ge11.5 As24 Se64.5 nanowire for supercontinuum generation: a parametric study. Opt. Exp. 22(25), 31029–31040 (2014)ADSCrossRefGoogle Scholar
  31. Karim, M.R., Rahman, B.M.A., Azabi, Y.O., Agrawal, A., Agrawal, G.P.: Ultra-broadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers. J. Opt. Soc. Am. B 32, 2343–2351 (2015)ADSCrossRefGoogle Scholar
  32. Karim, M.R., Ahmad, H., Rahman, B.M.A.: Design and modeling of dispersion engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation. J. Opt. Soc. Am. B 35, 266–275 (2018)ADSCrossRefGoogle Scholar
  33. Knight, J.C., Russell, P.S.J.: Photonic crystal fibers: new ways to guide light. Science 296, 276–277 (2002)CrossRefGoogle Scholar
  34. Knight, J.C., Birks, T.A., Russell, P.S., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)ADSCrossRefGoogle Scholar
  35. Kubat, I., Agger, C.S., Møller, U., Seddon, A.B., Tang, Z., Sujecki, S., Benson, T.M., Furniss, D., Lamarini, S., Scholle, K., Fuhrberg, P., Napier, B., Farries, M., Ward, J., Moselund, P.M., Bang, O.: Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibers pumped at 4.5 µm. Opt. Express 22, 19169–19182 (2014)ADSCrossRefGoogle Scholar
  36. Kubat, I., Bang, O.: Multimode supercontinuum generation in chalcogenide glass fibres. Opt. Express 24, 2513–2526 (2016)ADSCrossRefGoogle Scholar
  37. Kuyken, B., Ideguchi, T., Holzner, S., Yan, M., Hansch, T.W., Campenhout, J.V., Verheyen, P., Coen, S., Leo, F., Baets, R., Roelkens, G., Picque, N.: An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015)CrossRefGoogle Scholar
  38. Liao, M., Qin, G., Yan, X., Suzuki, T., Ohishi, Y.: A Tellurite nanowire with long suspended struts for low-threshold single-mode supercontinuum generation. J. Lightwave Technol. 29, 194–199 (2011)ADSCrossRefGoogle Scholar
  39. Liu, L., Cheng, T., Nagasaka, K., Tong, H., Qin, G., Suzuki, T., Ohishi, Y.: Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Opt. Lett. 41, 392–395 (2016)ADSCrossRefGoogle Scholar
  40. Magi, E.C., Fu, L.B., Nguyen, H.C., Lamont, M.R.E., Yeom, D.I., Eggleton, B.J.: Enhanced Kerr nonlinearity in sub-wavelength diameter As2 Se3 chalcogenide fiber tapers. Opt. Express 15, 10324–10329 (2007)ADSCrossRefGoogle Scholar
  41. Ma, P., Choi, D.Y., Yu, Y., Gai, X., Yang, Z., Debbarma, S., Madden, S., LutherDavies, B.: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Exp. 21(24), 29927–29937 (2013)ADSCrossRefGoogle Scholar
  42. Markos, C., Bang, O.: Nonlinear label-free biosensing with high sensitivity using As2 S3 chalcogenide tapered fiber. J. Lightwave Technol. 33(13), 2892–2898 (2015)ADSCrossRefGoogle Scholar
  43. Markos, C., Travers, J.C., Abdolvand, A., Eggleton, B.J., Bang, O.: Hybrid photoniccrystal fiber. Rev. Mod. Phys. 89(4), 045003 (2017)ADSCrossRefGoogle Scholar
  44. Møller, U., Yu, Y., Kubat, I., Petersen, C.R., Gai, G., Brilland, L., Mechin, D., Caillaud, C., Troles, J., Luther-Davies, B., Bang, O.: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Exp. 23(3), 3282–3291 (2015)ADSCrossRefGoogle Scholar
  45. Ou, H., Dai, S., Zhang, P., Liu, Z., Wang, X., Chen, F., Xu, H., Luo, B., Huang, Y., Wang, R.: Ultrabroad supercontinuum generated from a highly nonlinear GeSbSe fiber. Opt. Lett. 41, 3201–3504 (2016)ADSCrossRefGoogle Scholar
  46. Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, M., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Midinfrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultrahigh NA ChG step-index fiber. Nat. Photonics 8, 830–834 (2014)ADSCrossRefGoogle Scholar
  47. Petersen, C.R., Prtljaga, N., Farries, M., Ward, J., Napier, B., Lloyd, G.R., Nallala, J., Stone, N., Bang, O.: Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43, 999–1002 (2018)ADSCrossRefGoogle Scholar
  48. Petersen, C.R., Engelsholm, R.D., Markos, C., Brilland, L., Caillaud, C., Troles, J., Bang, O.: Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express 25, 15336–15348 (2017)ADSCrossRefGoogle Scholar
  49. Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., Ohishi, Y.: Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. Appl. Phys. Lett. 95(16), 161103 (2009)ADSCrossRefGoogle Scholar
  50. Rahman, B.M.A., Davies, J.B.: Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2, 682–688 (1984)ADSCrossRefGoogle Scholar
  51. Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2 Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber. J. Lightw. Technol. 33, 3914–3920 (2015)ADSCrossRefGoogle Scholar
  52. Sanghera, J., Florea, C., Shaw, L., Pureza, P., Nguyen, V., Bashkansky, M., Dutton, Z., Aggarwal, I.D.: Non-linear properties of chalcogenide glasses and fibers. J. Non-Cryst. Solids 354, 462–467 (2008)ADSCrossRefGoogle Scholar
  53. Schliesser, A., Picque, N., Haensch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012)ADSCrossRefGoogle Scholar
  54. Seddon, A.B., Napier, B., Lindsay, I., Lamrini, S., Moselund, P.M., Stone, N., Bang, O.: Mid-infrared spectroscopy/bioimaging: moving toward MIR optical biopsy. Laser Focus World 52(2), 50–53 (2016)Google Scholar
  55. Shaw, L.B., Gattass, R.R., Sanghera, J.S., and Aggarwal, I D.: All-fiber mid-IR supercontinuum source from 1.5 to 5 µm. In: Proceedings of the SPIE 7914 (2011)Google Scholar
  56. Siwicki, B., Klimczak, M., Stepien, R., Buczynski, R.: Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550 nm. Opt. Fiber Tech. 25, 64–71 (2015)ADSCrossRefGoogle Scholar
  57. Stepniewski, G., Klimczak, M., Bookey, H., Siwicki, B., Pysz, D., Stepien, R., Kar, A.K., Waddie, A.J., Taghizadeh, M.R., Buczynski, R.: Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm. Laser Phys. Lett. 11, 055103 (2014)ADSCrossRefGoogle Scholar
  58. Swiderski, J., Michalska, M.: High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared. Opt. Lett. 39, 910–913 (2014)ADSCrossRefGoogle Scholar
  59. Tajima, K., Zhou, J., Nakajima, K., Sato, K.: Ultra low loss and long length photonic crystal fiber. J. Lightwave Technol. 22(1), 7–10 (2004)ADSCrossRefGoogle Scholar
  60. Tang, Y., Wright, L.G., Charan, K., Wang, T., Xu, C., Wise, F.W.: Generation of intense 100-fs solitons tunable from 2 to 4.3 µm in fluoride fiber. Optica 3, 948–951 (2016)CrossRefGoogle Scholar
  61. Toupin, P., Brilland, L., Troles, J., Adam, J.-L.: Small core Ge–As–Se microstructured optical fiber with single-mode propagation and low optical losses. Opt. Mater. Express 2, 1359–1366 (2012)ADSCrossRefGoogle Scholar
  62. Wang, T., Gai, X., Wei, W., Wang, R., Yang, Z., Shen, X., Madden, S., Luther-Davies, B.: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt. Mater. Express 4, 1011–1022 (2014)ADSCrossRefGoogle Scholar
  63. Wei, C., Zhu, X., Norwood, R.A., Seng, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm. Opt. Exp. 21(24), 29488–29504 (2013)ADSCrossRefGoogle Scholar
  64. Xing, S., Grassani, D., Kharitonov, S., Billat, A., Bres, C.-S.: Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion. Opt. Express 24, 9741–9750 (2016)ADSCrossRefGoogle Scholar
  65. Xing, S., Grassani, D., Kharitonov, S., Brilland, L., Caillaud, C., Troles, J., Bres, C.S.: Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers. Optica 4, 643–648 (2017)CrossRefGoogle Scholar
  66. Yu, Y., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D., Madden, S., Luther-Davies, B.: 1.8–10 µm mid-infrared supercontinuum generation in a step-index chalcogenide fiber using low peak pump power. Opt. Lett. 40(6), 1081–1084 (2015)ADSCrossRefGoogle Scholar
  67. Zhao, Z., Wu, X., Wang, W., Pa, Z., Liu, Z., Zhang, P., Shen, X., Nie, Q., Dai, S., Wang, R.: Mid-infrared supercontinuum covering 2–16 µm in a low-loss telluride singlemode fiber. Laser Photonics Rev. 2, 1700005 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Ahmad
    • 1
    • 2
  • M. R. Karim
    • 1
  • S. Ghosh
    • 3
  • B. M. A. Rahman
    • 3
  1. 1.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Faculty of Science and TechnologyAirlangga UniversitySurabayaIndonesia
  3. 3.Department of Electrical and Electronic EngineeringCity University of LondonLondonUK

Personalised recommendations