Advertisement

Ellipsometry of anisotropic graphene-like two-dimensional materials on transparent substrates

  • Peep Adamson
Article
  • 52 Downloads

Abstract

New possibilities for determining anisotropic properties of the dielectric constants of two-dimensional materials by ellipsometry are developed. Graphene-like 2D materials are considered within the framework of macroscopic electrodynamics as ultrathin absorbing anisotropic films where the optical axis is perpendicular to the film surface. The ellipsometric inversion problem is resolved analytically. The resulting inversion formulas are very fast because they allow you to directly calculate the complex anisotropic dielectric constants without the use of sophisticated regression analysis or iterative root-finding procedures. In particular, the method offers an interest in graphene and related 2D materials because the anisotropic properties of such materials have not been studied to date.

Keywords

Ellipsometry Graphene Two-dimensional materials Optical properties 

Notes

Acknowledgements

The research was supported by the Estonian Research Project IUT2-24.

References

  1. Adamson, P.: Inverse relationships for reflection diagnostics of uniaxially anisotropic nanoscale films on isotropic materials. Appl. Opt. 50, 2773–2783 (2011)ADSCrossRefGoogle Scholar
  2. Adamson, P.: Reflectance calculations of anisotropic dielectric constants of graphene-like two-dimensional materials. Appl. Opt. 56, 7832–7840 (2017)ADSCrossRefGoogle Scholar
  3. Adamson, P.: A method for reducing the effect of surface contamination layers in reflection diagnostics of graphene-like 2D materials. NANO 13, 1850044 (2018)CrossRefGoogle Scholar
  4. Aspnes, D.E., Theeten, J.B., Hottier, F.: Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292–3302 (1979)ADSCrossRefGoogle Scholar
  5. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. North-Holland, Amsterdam (1977)Google Scholar
  6. Battie, Y., Izquierdo-Lorenzo, I., Resano-Garcia, A., En, Naciri A., Akil, S., Adam, P.M., Jradi, S.: How to determine the morphology of plasmonic nanocrystals without transmission electron microscopy? J. Nanopart. Res. 18, 217 (2016)ADSCrossRefGoogle Scholar
  7. Battie, Y., Izquierdo-Lorenzo, I., Resano-Garcia, A., En, Naciri A., Akil, S., Adam, P.M., Jradi, S.: Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry. Appl. Surf. Sci. 421, 301–309 (2017)ADSCrossRefGoogle Scholar
  8. Bedeaux, D., Vlieger, J.: Optical Properties of Surfaces. Imperial College Press, London (2001)CrossRefGoogle Scholar
  9. Cheon, S., Kihm, K.D., Kim, H., Lim, G., Park, J.S., Lee, J.S.: How to reliably determine the complex refractive index of graphene by using two independent measurement constraints. Sci. Reports 4, 6364 (2014)ADSCrossRefGoogle Scholar
  10. Duong, D.L., Yun, S.J., Lee, Y.H.: Van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017)CrossRefGoogle Scholar
  11. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)ADSCrossRefGoogle Scholar
  12. Fujiwara, H.: Spectroscopic Ellipsometry: Principles and Applications. Wiley, New York (2007)CrossRefGoogle Scholar
  13. Garcia-Caurel, E., de Martino, A., Gaston, J.P., Yan, L.: Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization. Appl. Spectrosc. 67, 1–21 (2013)ADSCrossRefGoogle Scholar
  14. Gilliot, M.: Inversion of ellipsometry data using constrained spline analysis. Appl. Opt. 56, 1173–1182 (2017)ADSCrossRefGoogle Scholar
  15. Gwo, S., Chen, H.Y., Lin, M.H., Sun, L., Li, X.: Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 45, 5672–5716 (2016)CrossRefGoogle Scholar
  16. Humlicek, J.: Data analysis for nanomaterials: effective medium approximation, its limits and implementations. In: Losurdo, M., Hingerl, K. (eds.) Ellipsometry at the Nanoscale. Springer, Berlin (2013)Google Scholar
  17. Isic, G., Jakovljevic, M., Filipovic, M., Jovanovic, D., Vasic, B., Lazovic, S., Puac, N., Petrovic, Z., Kostic, R., Gajic, R., Humlicek, J., Losurdo, M., Bruno, G., Bergmair, I., Hingerl, K.: Spectroscopic ellipsometry of few-layer graphene. J. Nanophoton. 5, 051809 (2011)ADSCrossRefGoogle Scholar
  18. Jellison, G.E., Hunn, J.D., Lee, H.N.: Measurement of optical functions of highly oriented pyrolytic graphite in the visible. Phys. Rev. B 76, 085125 (2007)ADSCrossRefGoogle Scholar
  19. Klintenberg, M., Lebegue, S., Ortiz, C., Sanyal, B., Fransson, J., Eriksson, O.: Evolving properties of two-dimensional materials: from graphene to graphite. J. Phys.: Condens. Matter 21, 335502 (2009)ADSGoogle Scholar
  20. Kravets, V.G., Grigorenko, A.N., Nair, R.R., Blake, P., Anissimova, S., Novoselov, K.S., Geim, A.K.: Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010)ADSCrossRefGoogle Scholar
  21. Lazzari, R., Renaud, G., Revenant, C., Jupille, J., Borensztein, Y.: Adhesion of growing nanoparticles at a glance: surface differential reflectivity spectroscopy and grazing incidence small angle X-ray scattering. Phys. Rev. B 79, 125428 (2009)ADSCrossRefGoogle Scholar
  22. Li, W., Cheng, G., Liang, Y., Tian, B., Liang, X., Peng, L., Walker, A.R.H., Gundlach, D.J., Nguyen, N.V.: Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon 99, 348–353 (2016)CrossRefGoogle Scholar
  23. Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J.B., Zhu, H.: Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)ADSCrossRefGoogle Scholar
  24. Losurdo, M., Bergmair, M., Bruno, G., Cattelan, D., Cobet, C., de Martino, A., Fleischer, K., Dohcevic-Mitrovic, Z., Esser, N., Galliet, M., Gajic, R., Hemzal, D., Hingerl, K., Humlicek, J., Ossikovski, R., Popovic, Z.V., Saxl, O.: Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J. Nanopart. Res. 11, 1521–1554 (2009)ADSCrossRefGoogle Scholar
  25. Lui, C.H., Malard, L.M., Kim, S.H., Lantz, G., Laverge, F.E., Saito, R., Heinz, T.F.: Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012)ADSCrossRefGoogle Scholar
  26. Matkovic, A., Ralevic, U., Chhikara, M., Jakovljevic, M., Jovanovic, D., Bratina, G., Gajic, R.: Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry. J. Appl. Phys. 114, 093505 (2013)ADSCrossRefGoogle Scholar
  27. Min, H., MacDonald, A.H.: Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene. Phys. Rev. Lett. 103, 067402 (2009)  ADSCrossRefGoogle Scholar
  28. Nelson, F.J., Kamineni, V.K., Zhang, T., Comfort, E.S., Lee, J.U., Diebold, A.C.: Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 253110 (2010)ADSCrossRefGoogle Scholar
  29. Nelson, F., Sandin, A., Dougherty, D.B., Aspnes, D.E., Rowe, J.E., Diebold, A.C.: Optical and structural characterization of epitaxial graphene on vicinal 6H–SiC(0001)–Si by spectroscopic ellipsometry, Auger spectroscopy, and STM. J. Vac. Sci. Technol. B 30, 04E106 (2012)CrossRefGoogle Scholar
  30. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  31. Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  32. Oates, T.W.H., Wormeester, H., Arwin, H.: Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog. Surf. Sci. 86, 328–376 (2011a)ADSCrossRefGoogle Scholar
  33. Oates, T.W.H., Ranjan, M., Facsko, S., Arwin, H.: Highly anisotropic effective dielectric functions of silver nanoparticle arrays. Opt. Express 19, 2014–2028 (2011b)ADSCrossRefGoogle Scholar
  34. Ochoa-Martínez, E., Gabás, M., Barrutia, L., Pesquera, A., Centeno, A., Palanco, S., Zurutuza, A., Algora, C.: Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. Nanoscale 7, 1491–1500 (2015)ADSCrossRefGoogle Scholar
  35. Shearer, C.J., Slattery, A.D., Stapleton, A.J., Shapter, J.G., Gibson, C.T.: Accurate thickness measurement of graphene. Nanotechnology 27, 125704 (2016)ADSCrossRefGoogle Scholar
  36. Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., Liu, S.: Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 439, 1079–1087 (2018)ADSCrossRefGoogle Scholar
  37. Tan, P.H., Han, W.P., Zhao, W.J., Wu, Z.H., Chang, K., Wang, H., Wang, Y.F., Bonini, N., Marzari, N., Pugno, N., Savini, G., Lombardo, A., Ferrari, A.C.: The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012)ADSCrossRefGoogle Scholar
  38. Tompkins, H.G., Irene, E.A.: Handbook of Ellipsometry. William Andrew Publishing, Norwich (2005)CrossRefGoogle Scholar
  39. Toudert, J., Simonot, L., Camelio, S., Babonneau, D.: Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phys. Rev. B 86, 045415 (2012)ADSCrossRefGoogle Scholar
  40. Wang, Y.Y., Gao, R.X., Ni, Z.H., He, H., Guo, S.P., Yang, H.P., Cong, C.X., Yu, T.: Thickness identification of two-dimensional materials by optical imaging. Nanotechnology 23, 495713 (2012)CrossRefGoogle Scholar
  41. Weber, J.W., Calado, V.E., van de Sanden, M.C.M.: Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 091904 (2010)ADSCrossRefGoogle Scholar
  42. Wurstbauer, Ul, Röling, C., Wurstbauer, Ur, Wegscheider, W., Vaupe, M., Thiesen, P.H., Weiss, D.: Imaging ellipsometry of graphene. Appl. Phys. Lett. 97, 231901 (2010)ADSCrossRefGoogle Scholar
  43. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (2005)Google Scholar
  44. Zaglmayr, H., Hu, C.G., Sun, L.D., Zeppenfeld, P.: Optical referencing in differential reflectance spectroscopy. Meas. Sci. Technol. 25, 115603 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations