Impact of light absorption and temperature on self-focusing of zeroth-order Bessel–Gauss beams in a plasma with relativistic–ponderomotive regime

  • L. Ouahid
  • L. Dalil-Essakali
  • A. BelafhalEmail author


The influence of light absorption and temperature on self-focusing of zeroth-order Bessel–Gauss beams through plasma, with relativistic–ponderomotive regime, is investigated in this paper. The nonlinear differential equation for beam-width is established by using parabolic equation approach under Wentzel–Kramers–Brillouin (WKB) paraxial approximation and solved numerically. The numerical results show the effects of beam parameter, relative density plasma, intensity parameter, absorption coefficient and plasma electron temperature on self-focusing of zeroth-order Bessel–Gauss beams in plasma. The self-focusing of Gaussian beams in the considered plasma is also deduced as a particular case in the present work.


Bessel–Gauss beams Self-focusing Relativistic–ponderomotive regime Plasma 


  1. Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609–636 (1968)ADSCrossRefGoogle Scholar
  2. Amendt, P., Eder, D.C., Wilks, S.C.: X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589–2592 (1991)ADSCrossRefGoogle Scholar
  3. Arlt, J., Chávez, V.G., Sibbett, W., Dholakia, K.: Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001)ADSCrossRefGoogle Scholar
  4. Belafhal, A., Dalil-Essakali, L.: Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system. Opt. Commun. 177, 181–188 (2000)ADSCrossRefGoogle Scholar
  5. Bokaei, B., Niknam, A.R., Jafari Milani, M.R.: Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma. Phys. Plasmas 20, 103107-1–103107-6 (2013)ADSCrossRefGoogle Scholar
  6. Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K., Rhodes, C.K.: Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 5830–5845 (1992)ADSCrossRefGoogle Scholar
  7. Brandi, H.S., Manus, C., Mainfray, G., Lehner, T.: Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 3780–3783 (1993a)ADSCrossRefGoogle Scholar
  8. Brandi, H.S., Manus, C., Mainfray, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539–3550 (1993b)ADSCrossRefGoogle Scholar
  9. Cang, J., Zhang, Y.: Axial intensity distribution of truncated Bessel–Gauss beams in a turbulent atmosphere. Optik 121, 239–245 (2010)ADSCrossRefGoogle Scholar
  10. Chen, F., Li, J., Belafhal, A., Chafiq, A., Sun, X.: Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle. Laser Phys. Lett. 15, 1–5 (2018)Google Scholar
  11. Corkum, P.B., Rolland, C., Rao, T.S.: Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271 (1986)ADSCrossRefGoogle Scholar
  12. Eder, D.C., Amendt, P., Wilks, S.C.: Optical-field-ionized plasma X-rays lasers. Phys. Rev. A 45, 6761–6772 (1992)ADSCrossRefGoogle Scholar
  13. El Halbaa, E.M., Khouilida, M., Boustimi, M., Belafhal, A.: Generation of generalized spiraling Bessel beams by a curved fork-shaped hologram with Bessel–Gaussian laser beams modulated by a Bessel grating. Optik 154, 331–343 (2018)ADSCrossRefGoogle Scholar
  14. Fahrbach, F.O., Simon, P., Rohrbach, A.: Microscopy with self-reconstructing beams. Nat. Photonics 4, 780–785 (2010)ADSCrossRefGoogle Scholar
  15. Florjanczyk, M., Tremblay, R.: Guiding of atoms in a travelling-wave laser trap formed by the axicon. Opt. Commun. 73, 448–450 (1989)ADSCrossRefGoogle Scholar
  16. Gaur, B., Rawat, P., Purohit, G.: Mitigation of stimulated Raman backscattering by elliptical laser beam in collisionless plasma. Optik 157, 99–112 (2018)ADSCrossRefGoogle Scholar
  17. Gill, T.S., Mahajan, R., Kaur, R.: Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110-1–033110-8 (2011)ADSCrossRefGoogle Scholar
  18. Gori, F., Guattari, G.: Bessel–Gauss beams. Opt. Commun. 64, 491–495 (1987)ADSCrossRefGoogle Scholar
  19. Herman, R.M., Wiggins, T.A.: Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932–942 (1991)ADSCrossRefGoogle Scholar
  20. Hricha, Z., Dalil-Essakali, L., Belafhal, A.: Axial intensity distribution and focal shifts of focused partially coherent conical Bessel–Gauss beams. Opt. Quantum Electron. 35, 101–110 (2003)CrossRefGoogle Scholar
  21. Kumar, H., Aggarwal, M., Gill, T.S.: Combined effect of relativistic and ponderomotive nonlinearity on self-focusing of Gaussian laser beam in a cold quantum plasma. Laser Part. Beams 34, 426–432 (2016)ADSCrossRefGoogle Scholar
  22. Kumar, H., Aggarwal, M., Gill, T.S.: Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)ADSCrossRefGoogle Scholar
  23. Milani, M.R.J., Niknam, A.R., Bokaei, B.: Temperature effect on self-focusing and defocusing of Gaussian laser beam propagation through plasma in weakly relativistic regime. IEEE Trans. Plasma Sci. 42, 742–747 (2014)ADSCrossRefGoogle Scholar
  24. Mitri, F.G.: Nonparaxial Bessel and Bessel–Gauss pincers light-sheets. Phys. Lett. A 190, 1–5 (2016)MathSciNetGoogle Scholar
  25. Navare, S.T., Takaleb, M.V., Patil, S.D., Fularia, V.J., Dongarea, M.B.: Impact of linear absorption on self-focusing of Gaussian laser beam in collisional plasma. Opt. Lasers Eng. 50, 1316–1320 (2012)CrossRefGoogle Scholar
  26. Niknam, A.R., Hashemzadeh, M., Shokri, B.: Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma. Phys. Plasmas 16, 033105-1–033105-5 (2009)ADSGoogle Scholar
  27. Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Effect of light absorption and temperature on self-focusing of finite Airy–Gaussian beams in a plasma with relativistic and ponderomotive regime. Opt. Quantum Electron. 50(216), 1–17 (2018a)Google Scholar
  28. Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Relativistic self-focusing of finite Airy–Gaussian beams in collisionless plasma using the Wentzel–Kramers–Brillouin approximation. Optik 154, 58–66 (2018b)ADSCrossRefGoogle Scholar
  29. Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Contribution to the study of lowest order Bessel–Gaussian beams propagating in thermal quantum plasma. Optik 174, 106–113 (2018c)ADSCrossRefGoogle Scholar
  30. Overfelt, P.: Bessel–Gauss pulses. Phys. Rev. A 44, 3941–3947 (1991)ADSMathSciNetCrossRefGoogle Scholar
  31. Overfelt, P.: Generation of a Bessel–Gauss pulse from a moving disk source distribution. J. Opt. Soc. Am. A 14, 1087–1091 (1997)ADSMathSciNetCrossRefGoogle Scholar
  32. Patil, S.D., Takale, M.V.: Weakly relativistic ponderomotive effects on self-focusing in the interaction of cosh-Gaussian laser beams with a plasma. Laser Phys. Lett. 10, 115402-1–115402-5 (2013)ADSCrossRefGoogle Scholar
  33. Patil, S.D., Takale, M.V.: Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: effect of light absorption. AIP Conf. Proc. 1728, 020129-1–020129-4 (2016)Google Scholar
  34. Patil, S.D., Takale, M.V., Fulari, V.J., Gupta, D.N., Suk, H.: Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1–6 (2013)ADSCrossRefGoogle Scholar
  35. Patil, S.D., Takale, M.V., Gill, T.S.: Effect of light absorption on relativistic self-focusing of Gaussian laser beam in plasma. Eur. Phys. J. D 69, 163-1–163-4 (2015)ADSCrossRefGoogle Scholar
  36. Patil, S.D., Takale, M.V., Fulari, V.J., Gill, T.S.: Sensitiveness of light absorption for self-focusing at laser-plasma interaction with weakly relativistic and ponderomotive regime. Laser Part. Beams 34, 669–674 (2016)ADSCrossRefGoogle Scholar
  37. Patil, S.D., Valkunde, A.T., Vhanmore, B.D., Urunkar, T.U., Gavade, K.M., Takale, M.V.: Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma. AIP Conf. Proc. 1953, 140046-1–140046-4 (2018a)Google Scholar
  38. Patil, S.D., Chikode, P.P., Takal, M.V.: Turning point temperature of self-focusing at laser-plasma interaction with weak relativistic–ponderomotive nonlinearity: effect of light absorption. J. Opt. 47, 174–179 (2018b)CrossRefGoogle Scholar
  39. Priyanka, Chauhanb, P., Purohit, G.: Relativistic ponderomotive effect on the propagation of rippled laser beam and the excitation of electron plasma wave in collisionless plasma. Opt. Commun. 311, 317–324 (2013)ADSCrossRefGoogle Scholar
  40. Purohit, G., Rawat, P.: Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma. Laser Part. Beams 33, 499–509 (2015)ADSCrossRefGoogle Scholar
  41. Purohit, G., Rawat, P., Gauniyal, R.: Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma. Phys. Plasmas 23, 013103-1–013103-9 (2016)ADSCrossRefGoogle Scholar
  42. Saad, F., Belafhal, A.: Conical refraction with Bessel–Gaussian beam modulated by Bessel gratings using biaxial crystals. Optik 127, 10868–10874 (2016)ADSCrossRefGoogle Scholar
  43. Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)ADSCrossRefGoogle Scholar
  44. Sprangle, P., Esarey, E., Krall, J.: Laser driven electron acceleration in vacuum, gases and plasmas. Phys. Plasmas 3, 2183–2190 (1996)ADSCrossRefGoogle Scholar
  45. Sturrock, P.A., Ball, R.H., Baldwin, D.E.: Radiation at the plasma frequency and its harmonic from a turbulent plasma. Phys. Fluids 8, 1509–1516 (1965)ADSCrossRefGoogle Scholar
  46. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)ADSCrossRefGoogle Scholar
  47. Willes, A.J., Robinson, P.A., Melrose, D.B.: Second harmonic electromagnetic emission via Langmuir wave coalescence. Phys. Plasmas 3, 149–159 (1996)ADSCrossRefGoogle Scholar
  48. Zhang, Q., Cheng, X., Chen, H., He, B., Ren, Z., Zhang, Y., Bai, J.: “ Enhancement of phase conjugation degenerate four-wave mixing using a Bessel beam. Photonics Res. 6, 162–167 (2018a)CrossRefGoogle Scholar
  49. Zhang, Z., Zeng, X., Miao, Y., Fan, Y., Gao, X.: Focusing properties of vector Bessel–Gauss beam with multiple-annular phase wavefront. Optik 157, 240–247 (2018b)ADSCrossRefGoogle Scholar
  50. Zhao, C., Huang, K., Lu, X.: Propagation properties of Bessel and Bessel–Gaussian beams in a fractional Fourier transform optical system. Opt. Laser Technol. 42, 280–284 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Nuclear, Atomic and Molecular Physics, Department of Physics, Faculty of SciencesUniversity Chouaïb DoukkaliEl JadidaMorocco

Personalised recommendations