Advertisement

Simultaneous measurement of temperature and magnetic field based on surface plasmon resonance and Sagnac interference in a D-shaped photonic crystal fiber

  • Hai Liu
  • Hongwei Li
  • Qing Wang
  • Meng Wang
  • Yi Ding
  • Chenghao Zhu
Article
  • 70 Downloads

Abstract

A novel D-shaped photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) and Sagnac interference technology is proposed to realize the simultaneous measurement of temperature and magnetic field. Two ultra-large air-holes are introduced into the cladding layer to increase the birefringence. Magnetic fluid (MF) material is filled into the cladding air-holes to measure the temperature and magnetic field based on the dependence of the MF refractive index (RI) on temperature and magnetic field. The D-shaped flat surface coated with a gold layer is in direct contact with ethanol to achieve the dual-parameter demodulation and solve the cross-sensitivity problem. The proposed sensor has the advantages of high sensitivity and easy fabrication for the multi-parameter measurement applications.

Keywords

Photonic crystal fiber Surface plasmon resonance Sagnac interference Fiber sensing 

Notes

Acknowledgements

This work is supported by “the Fundamental Research Funds for the Central Universities” (Grant No. 2018QNA40, China University of Mining and Technology).

References

  1. Ayyanar, N., Raja, R.V.J., Vigneswaran, D., et al.: Highly efficient compact temperature sensor using liquid infiltrated asymmetric dual elliptical core photonic crystal fiber. Opt. Mater. 64, 574–582 (2017a)ADSCrossRefGoogle Scholar
  2. Ayyanar, N., Vigneswaran, D., Sharma, M., et al.: Hydrostatic pressure sensor using high birefringence photonic crystal fibers. IEEE Sens. J. 17(3), 650–656 (2017b)ADSCrossRefGoogle Scholar
  3. Chen, Y., Han, Q., Yan, W., et al.: Magnetic-fluid-coated photonic crystal fiber and FBG for magnetic field and temperature sensing. IEEE Photonics Technol. Lett. 28(23), 2665–2668 (2016)ADSCrossRefGoogle Scholar
  4. Chen, X., Xia, L., Li, C.: Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J. PP(99), 1–9 (2018)Google Scholar
  5. Dash, J.N., Jha, R.: On the performance of graphene-based D-shaped photonic crystal fiber biosensor using surface plasmon resonance. Plasmonics. 10(5), 1123–1131 (2015)CrossRefGoogle Scholar
  6. Deng, M., Huang, C., Liu, D., et al.: All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer. Opt. Express 23(16), 20668–20674 (2015)ADSCrossRefGoogle Scholar
  7. Ghosh, G., Endo, M., Iwasaki, T.: Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Lightwave Technol. 12(8), 1338–1342 (1994)ADSCrossRefGoogle Scholar
  8. Han, T., Liu, Y., Wang, Z., et al.: Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers. Opt. Express 22(12), 15002–15016 (2014)ADSCrossRefGoogle Scholar
  9. Hassani, A., Skorobogatiy, M.: Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. JOSA B. 24(6), 1423–1429 (2007)ADSCrossRefGoogle Scholar
  10. Li, C., Ning, T., Wen, X., et al.: Magnetic field and temperature sensor based on a no-core fiber combined with a fiber Bragg grating. Opt. Laser Technol. 72, 104–107 (2015)ADSCrossRefGoogle Scholar
  11. Li, J., Fan, P., Tian, Z., et al.: Potential for simultaneous measurement of magnetic field and temperature utilizing fiber taper modal interferometer and magnetic fluid. IEEE Photonics J. 8(6), 1–9 (2016)Google Scholar
  12. Li, X., Zhao, Y., Zhou, X., et al.: High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber. Instrum Sci. Technol. 46, 253–264 (2017a)CrossRefGoogle Scholar
  13. Li, D., Zhang, W., Liu, H., et al.: High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photonics J. 9(2), 1–8 (2017b)Google Scholar
  14. Li, X., Zhou, X., Zhao, Y., et al.: Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Opt. Fiber Technol. 41, 1–6 (2018)ADSCrossRefGoogle Scholar
  15. Liu, B., Lu, Y., Yang, X., et al.: Surface plasmon resonance sensor based on photonic crystal fiber filled with core–shell Ag–Au nanocomposite materials. Opt. Eng. (2016a).  https://doi.org/10.1117/1.OE.55.11.117104 CrossRefGoogle Scholar
  16. Liu, Q., Li, S.G., Wang, X.: Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting. Sens. Actuators B Chem. 242, 949–955 (2016b)CrossRefGoogle Scholar
  17. Miao, Y., Zhang, H., Lin, J., et al.: Simultaneous measurement of temperature and magnetic field based on a long period grating concatenated with multimode fiber. Appl. Phys. Lett. (2015).  https://doi.org/10.1063/1.4916368 CrossRefGoogle Scholar
  18. Qian, W., Zhao, C.L., Chan, C.C., et al.: Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer. IEEE Sens. J. 12(8), 2593–2597 (2012)ADSCrossRefGoogle Scholar
  19. Shi, W., Jing, W.: Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling. Acta Opt. Sin. 35(2), 41–45 (2015)MathSciNetGoogle Scholar
  20. Song, B., Miao, Y., Lin, W., et al.: Loss-based magnetic field sensor employing hollow core fiber and magnetic fluid. IEEE Photonics Technol. Lett. 26(22), 2283–2286 (2014)ADSCrossRefGoogle Scholar
  21. Suryavanshi, R.C., Ghunawat, A.K., Jain, S., et al.: Optimization of highly nonlinear soft glass photonic crystal fiber with high birefringence. In: International Conference on Computer, Communications and Electronics, pp. 618–622 (2017)Google Scholar
  22. Zhao, Y., Wu, D., Lv, R.Q., et al.: Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE Trans. Magn. 50(8), 1–5 (2014)CrossRefGoogle Scholar
  23. Zhao, Y., Cai, L., Li, X.G., et al.: A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Phys. Sin. 7, 9–17 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hai Liu
    • 1
  • Hongwei Li
    • 1
  • Qing Wang
    • 1
  • Meng Wang
    • 1
  • Yi Ding
    • 1
  • Chenghao Zhu
    • 1
  1. 1.School of Information and Control EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations