Advertisement

Photonic crystal based routers for photonic integrated on chip networks: a brief analysis

  • D. Shanmuga sundar
  • R. Sathyadevaki
  • T. Sridarshini
  • A. Sivanantha Raja
Article
  • 20 Downloads

Abstract

Photonic integrated circuits are the devices in which multiple devices are integrated in a single substrate to obtain the functionality of entire components as a single chip. In this paper, the photonic crystal based optical 4 × 4 routers for photonic integrated on chip networks is designed and the characteristics of the same are reported. The investigation of the router is extended by varying the crystal radius and materials. The materials such as germanium (Ge) of RI 4.0029, gallium arsenide of RI 3.3219 and indium phosphate (InP) of RI 3.457 are used for the router formation. Performance of the router is examined for the wavelength gamut of 1500–1600 nm and the routed wavelengths are tabulated. Crosstalk (CT) and insertion loss (IL) are the crucial determinants of the router and compared to all the router configurations Ge pillared router has minimum CT and InP pillared router has minimum IL. The diminutive structured router in the size of 33 μm × 36 μm has been depicted to place the footprints on the integrated photonics of ultra- compact device employment.

Keywords

Photonic crystal based router Photonic crystal ring resonator (PCRR) Crosstalk (CT) Insertion loss (IL) Photonic integrated circuits (PIC) 

References

  1. Areed, N.F.F., Obayya, S.S.A.: Novel all-optical liquid photonic crystal router. IEEE Photon. Technol. Lett. 25(13), 1254–1257 (2013)ADSCrossRefGoogle Scholar
  2. Beausoleil, R.G., Kuekes, P.J., Snider, G.S., Shih-Yuan, W., Williams, R.S.: Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230–247 (2008)CrossRefGoogle Scholar
  3. Biberman, A., Lee, B.G., Sherwood-Droz, N., Lipson, M., Bergman, K.: Broadband operation of nano photonic router for silicon photonic networks-on-chip. IEEE Photon. Technol. Lett. 22(12), 926–928 (2010)ADSCrossRefGoogle Scholar
  4. Calo, G., Petruzzelli, V.: Wavelength routers for optical networks-on-chip using optimized photonic crystal ring resonators. IEEE Photon. J. (2013).  https://doi.org/10.1109/jphot.2013.2264278 CrossRefGoogle Scholar
  5. Calò, G., Petruzzelli, V.: Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip. J. Opt. Soc. Am. B 31(3), 517–525 (2014)ADSCrossRefGoogle Scholar
  6. Chu, S.T., Little, B.E., Pan, W., Kaneko, T.A., Sato, S.A., Kokubun, Y.A.: An eight-channel add–drop filter using vertically coupled microring resonators over a cross grid. Photon. Technol. Lett. IEEE 11, 691–693 (1999)ADSCrossRefGoogle Scholar
  7. Dang, D., Patra, B., Mahapatra, R., Fiers, M.: Mode-division-multiplexed photonic router for high performance network-on-chip. In: IEEE (2015).  https://doi.org/10.1109/vlsid.2015.24
  8. Geerthana, S., Sivanantha Raja, A., Shanmuga Sundar, D.: Design and optimization of photonic crystal fiber with improved optical characteristics. J. Nonlinear Opt. Phys. Mater. 24(04), 1550051 (2015)ADSCrossRefGoogle Scholar
  9. Lexau, J., Zheng, X., Bergey, J., Krishnamoorthy, A.V., Ho, R., Drost, R., Cunningham, J.: CMOS integration of capacitive, optical, and electrical interconnects. In: International Interconnect Technology Conference, IEEE, pp. 78–80 (2007)Google Scholar
  10. Little, B.E., Chu, S.T., Pan, W., Kokubun, Y.A.K.Y.: Microring resonator arrays for VLSI photonics. Photon. Technol. Lett. IEEE 12, 323–325 (2000)ADSCrossRefGoogle Scholar
  11. Lu, J., Ren, H., Guo, S., Wu, Z., Qin, Y., Hu, W., Jiang, C.: Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities. Opt. Int. J. Light Electron Opt. (2015).  https://doi.org/10.1016/j.ijleo.2015.11.235 CrossRefGoogle Scholar
  12. Mahmoud, M.Y., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124, 2864–2867 (2013)CrossRefGoogle Scholar
  13. McFadden, M.J., Iqbal, M., Dillon, T., Nair, R., Gu, T., Prather, D.W., Haney, M.W.: Multi scale free-space optical interconnects for in trachip global communication: motivation, analysis, and experimental validation. Appl. Opt. 45, 6358–6366 (2006)ADSCrossRefGoogle Scholar
  14. Miller, D.A.B.: Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728 (2000)CrossRefGoogle Scholar
  15. Poon, A.W., Luo, X., Xu, F.: Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc. IEEE 97(7), 1216–1238 (2009)CrossRefGoogle Scholar
  16. Rajalakshmi, G., Sivanantha Raja, A., Shanmuga Sundar, D.: Design and optimization of two dimensional photonic crystal based optical filter. J. Nonlinear Opt. Phys. Mater. 24, 31550027 (2015)ADSCrossRefGoogle Scholar
  17. Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two dimensional photonic crystal based bandpass filter. Opt. Quant. Electron. 43(6), 69–82 (2012)CrossRefGoogle Scholar
  18. Sathyadevaki, R., Shanmuga Sundar, D., Sivanantha Raja, A.: Design of dual ring wavelength filters for WDM applications. Opt. Commun. (Elsevier) 380(1), 409–418 (2016a).  https://doi.org/10.1016/j.optcom.2016.06.045 ADSCrossRefGoogle Scholar
  19. Sathyadevaki, R., Sivanantha Raja, A., Shanmuga Sundar, D.: Photonic crystal-based optical filter: a brief investigation. Photon Netw. Commun. (2016b).  https://doi.org/10.1007/s11107-016-0620-9 CrossRefGoogle Scholar
  20. Semiconductor Industry Association: International Technology Road Map for Semiconductors. Semiconductor Industry Association, San Jose (2005)Google Scholar
  21. Shacham, A., Bergman, K., Carloni, L.P.: On the design of a photonic network-on-chip. In: Networks-on-Chip, pp. 53–64 (2007)Google Scholar
  22. Shacham, A., Bergman, K., Carloni, L.P.: Proceedings of the First International Symposium on Networks-on-Chip (NOCS’07), pp. 53–64. IEEE Press (2007)Google Scholar
  23. Shacham, A., Bergman, K., Carloni, L.P.: Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)MathSciNetCrossRefGoogle Scholar
  24. Sherwood-Droz, N.: Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16(20), 15915–15922 (2008)ADSCrossRefGoogle Scholar
  25. Small, B.A., Lee, B.G., Bergman, K., Xu, Q., Lipson, M.: Multiple-wavelength integrated photonic networks based on microring resonator devices. J. Opt. Netw. 6, 112–120 (2007)CrossRefGoogle Scholar
  26. Tosik, G., Gaffiot, F., Lisik, Z., O’Connor, I., Tissafi-Drissi, F.: Power dissipation in optical and metallic clock distribution networks in new VLSI technologies. Proc. Inst. Electr. Eng. Electr. Lett. 4(3), 198–200 (2004)Google Scholar
  27. Xia, F., Rooks, M., Sekaric, L., Vlasov, Y.: Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007)ADSCrossRefGoogle Scholar
  28. Yu, Z., Han, T., Wang, G., et al.: ‘8 × 8 passive no blocking microring resonator crossbar for on-chip WDM-based interconnection network. Optik 124, 3734–3738 (2013)ADSCrossRefGoogle Scholar
  29. Zhang, L., Yang, M., Jiang, Y., Regentova, E., Lu, E.: Generalized wavelength routed optical micronetwork in network-on-chip. In: Proceedings of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Department of Product Development and Innovation CentreBharat Electronics LimitedBangaloreIndia
  3. 3.Department of ElectronicsMadras Institute of Technology, Anna UniversityChennaiIndia
  4. 4.Department of ECEAlagappa Chettiar College of Engineering and TechnologyKaraikudiIndia

Personalised recommendations