Advertisement

A meshless method of line radial base function study of Gaussian wave packet broadening in few semiconducting mediums: electron–electron interaction effects

  • M. Solaimani
  • Mehrzad Ghorbani
Article
  • 29 Downloads

Abstract

In this paper, we have studied the effect of electron–electron interaction on wave packet broadening in different semiconducting mediums in the presence of conduction band non-parabolicity. We have solved the resulting one dimensional fourth order Schrödinger equation by means of a meshless radial base function approach and 2nd order Runge Kutta method. We have compared different semiconducting mediums GaAs, GaN, AlN, InSb and GaSb and showed that in the absence of the electron–electron interaction, the Gaussian wave packet decays with time elapse while in the presence of the electron–electron interaction, the Gaussian wave packet localizes when time increases. Finally, Gaussian wave packet also localizes faster when we increase the electron–electron interaction strength.

Keywords

Semiconducting mediums Band non-parabolicity effect Radial base function approach Multiquadric Wave packet broadening Electron–electron interaction 

Notes

Acknowledgements

We are grateful for Qom University of Technology supports.

References

  1. Adachia, S.: GaAs, AlAs, and AlxGa1 _xAs: material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985)ADSCrossRefGoogle Scholar
  2. Aleomraninejada, S.M.A., Solaimani, M., Mohsenyzadeh, M., Lavaei, L.: Discretized Euler–Lagrange variational study of nonlinear optical rectification coefficients. Physica Scr. Phys. Scr. 93, 095803-1–095803-8 (2018)ADSGoogle Scholar
  3. Andrews, Mark: The evolution of free wave packets. Am. J. Phys. 76, 1102–1107 (2008)ADSCrossRefGoogle Scholar
  4. Bader, P., Blanes, S., Casas, F.: Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117-1–124117-11 (2013)ADSCrossRefGoogle Scholar
  5. Bednarek, S., Szafran, B., Lis, K.: Self-focusing of a quantum-well-confined electron wave packet interacting with a metal plate. Phys. Status Solidi B 243, 2811–2818 (2006)ADSCrossRefGoogle Scholar
  6. Diez, E., Dominguez-Adame, F., Sanchez, A.: Nonlinear resonant tunnelling through double-barrier structures. Phys. Lett. A 198, 403–406 (1995)ADSCrossRefGoogle Scholar
  7. Diez, E., Dominguez-Adame, F., Macia, E., Sanchez, A.: Dynamical phenomena in Fibonacci semiconductor superlattices. Phys. Rev. B 54, 16792–16798 (1996)ADSCrossRefGoogle Scholar
  8. Diez, E., Gomez-Alcala, R., Domínguez-Adame, F., Sanchez, A., Berman, G.P.: Rabi oscillations in semiconductor superlattices. Phys. Rev. B 58, 1146–1149 (1998)ADSCrossRefGoogle Scholar
  9. Fojon, O., Gadella, M., Lara, L.P.: The quantum square well with moving boundaries: a numerical analysis. Comput. Math Appl. 59, 964–976 (2010)MathSciNetCrossRefGoogle Scholar
  10. Ford, G.W., O’Connell, R.F.: Wave packet spreading: temperature and squeezing effects with applications to quantum measurement and decoherence. Am. J. Phys. 70, 319–324 (2002)ADSCrossRefGoogle Scholar
  11. Ghorbani, M.: Diffuse element kansa method. Appl. Math. Sci. 4, 583–594 (2010)MathSciNetzbMATHGoogle Scholar
  12. Haq, S., Hussain, A., Uddin, M.: On the numerical solution of nonlinear Burgers’-type equations using meshless method of lines. Appl. Math. Comput. 218, 6280–6290 (2012)MathSciNetzbMATHGoogle Scholar
  13. Ismail, M.S.: Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simul. 78, 532–547 (2008)CrossRefGoogle Scholar
  14. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math Appl. 19, 147–161 (1990)MathSciNetCrossRefGoogle Scholar
  15. Kuznetsov, A.V., Sanders, G.D., Stanton, C.J.: Wave-packet dynamics in quantum wells. Phys. Rev. B 52, 12045–12055 (1995)ADSCrossRefGoogle Scholar
  16. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York (1991)zbMATHGoogle Scholar
  17. Lundstrom, M.: Fundamentals of Carrier Transport, 2nd edn, p. 14. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  18. Miller, K.: Moving finite elements II. SIAM J. Numer. Anal. 18, 1033–1057 (1981)ADSMathSciNetCrossRefGoogle Scholar
  19. Miller, K., Miller, R.N.: Moving finite elements I. SIAM J. Numer. Anal. 18, 1019–1032 (1981)ADSMathSciNetCrossRefGoogle Scholar
  20. Monterola, C., Saloma, C.: Solving the nonlinear Schrödinger equation with an unsupervised neural network: estimation of error in solution. Opt. Commun. 222, 331–339 (2003)ADSCrossRefGoogle Scholar
  21. Nassar, A.B., Miret-Artes, S.: Dividing Line between quantum and classical trajectories in a measurement problem: Bohmian time constant. Phys. Rev. Lett. 111, 150401-1–150401-5 (2013)ADSCrossRefGoogle Scholar
  22. Nithiananthi, P., Jayakumar, K.: Diamagnetic susceptibility of hydrogenic donor impurity in low-dimensional semiconducting systems. Solid State Commun. 137, 427–430 (2006)ADSCrossRefGoogle Scholar
  23. Nobre, F.D., Rego-Monteiro, M.A., Tsallis, C.: Nonlinear relativistic and quantum equations with a common type of solution. Phys. Rev. Lett. 106, 140601-1–140601-4 (2011)ADSCrossRefGoogle Scholar
  24. Scarfone, A.M.: Phys. Rev. E 71, 051103 (2005)ADSMathSciNetCrossRefGoogle Scholar
  25. Solaimani, M., Aleomraninejad, S.M.A., Lavaei, L.: Optical rectification in quantum wells within different confinement and nonlinearity regimes. Superlattices Microstruct. 111, 556–567 (2017)ADSCrossRefGoogle Scholar
  26. Solaimani, M., Farnam, B., Ghalandari, M., SeyedShirazi, S.Z.: Wave localization in two dimensional parabolic periodic refractive index profiles: a 4th order Runge–Kutta study. Opt. Quant. Electron. 50, 114 (2018)CrossRefGoogle Scholar
  27. Su, Q., Smetanko, B.A., Grobe, R.: Relativistic suppression of wave packet spreading. Opt. Exp. 2, 277–281 (1998)ADSCrossRefGoogle Scholar
  28. Vatan, M., Farnam, B., Solaimani, M., Aleomraninejad, S.M.A.: Transport properties of a traveling wave packet through rectangular quantum wells and barriers. Optik 136, 281–288 (2017)ADSCrossRefGoogle Scholar
  29. Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)ADSCrossRefGoogle Scholar
  30. Wood, C., Jena, D.: Polarization Effects in Semiconductors From Ab Initio Theory to Device Applications, p. 119. Springer, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceQom University of TechnologyQomIran
  2. 2.Department of Mathematics, Faculty of ScienceQom University of TechnologyQomIran

Personalised recommendations