The formation and characterization of titanium dioxide layers deposited on copper middle nano-layer

  • Sara Mortazavi
  • Ali Asghar KhakpoorEmail author
  • Atiye Mehrzad
  • Amir Sajadimehr


In this research, two thin layers of Cu with thicknesses of 20 ± 2 nm and 30 ± 2 nm are coated on substrates of quartz. A layer of titanium dioxide with a thickness of 300 ± 25 nm is coated on each nano layer. Also, in order to compare, a layer of titanium dioxide with a thickness of 300 ± 25 nm is coated on a substrate of quartz. All coatings are conducted using physical vapor deposition and electron beam deposition methods. The major goal is to study the impact of Cu nano layer on the surface morphology, grain size, grain boundaries, crystalline structure and phases, and some optical properties such as absorption and transmission of titanium dioxide layers. The field emission scanning electron microscope is used to analyze the surface morphology. Moreover, the crystalline structure of layers is determined using X-ray diffraction. The transmission and absorption of titanium dioxide layers are also determined using ultraviolet–visible spectroscopy. These analyses indicate that the existence of a middle nano layer of copper makes the layers’ surfaces denser and more uniform; however, it has no effect on the structure of layers’ crystalline phase and the way of transferring the layers’ crystalline phase caused by annealing. A slight increase in layers’ absorption and a small shift in absorption edge occur due to the presence of middle nano layer of copper and its thickening. Another remarkable effect that happens due to the presence of copper’s middle nano layer is the amplification and shift of absorption bands in the visible spectrum.


Middle nano layer Cu nano layer Titanium dioxide Absorption Transmission 



We would like to thank Islamic Azad University Central Tehran Branch (IAUCTB) for helpful protections. Also, the authors would thank from Dr. Zare Dehnavi and Dr. Mahdavi Shirvani for the valuable cooperation. This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.


  1. Anthony, B.J., Fernandez-Ibañez, P.A., Dunlop, P.S.M., Alrousan, D.M.A., Hamilton, J.W.J.: Photocatalytic enhancement for solar disinfection of water. Int. J. Photoenergy, 1–12, Article ID 798051 (2011)Google Scholar
  2. Bensouici, F., Bououdina, M., Dakhel, A.A., Tala-Ighil, R., Tounane, M., Iratni, A., Souier, T., Liu, S.: Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. (2008). CrossRefGoogle Scholar
  3. Colón, G., Maicu, M., Hidalgo, M.C., Navıo, A.J.: Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B Environ. 67, 41–51 (2006)CrossRefGoogle Scholar
  4. Cullity, B.D.: Elements of X-Ray Diffraction. Addison-Wesley Publication Co., Boston (1956)Google Scholar
  5. Domaradzki, J., Kaczmarek, D., Prociow, E.L., Borkowska, A., Berlicki, T., Sieradzka, K.: Optical and electrical properties of TiO2 doped with Tb and Pd. Mater. Sci. Pol. 26(1), 143–147 (2008)Google Scholar
  6. Fujishima, A., Zhang, X., Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)ADSCrossRefGoogle Scholar
  7. Ganesh, I., Kumara, P.P., Annapoornab, I., Sumlinerb, J.M., Ramakrishnaa, M., Hebalkara, N.Y., Padmanabhama, G., Sundararajan, G.: Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci. 293, 229–247 (2014)ADSCrossRefGoogle Scholar
  8. Gao, Y., Masuda, Y., Seob, W.S., Ohtaa, H., Koumoto, K.: TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceram. Inter. 30, 1365–1368 (2004)CrossRefGoogle Scholar
  9. Gondal, M.A., Rashid, S.G., Dastageer, M.A., Zubair, S.M., Ali, M.A., Lienhard, J.H., McKinley, G.H., Varanasi, K.K.: Sol–gel synthesis of Au/Cu-TiO2 nanocomposite and their morphological and optical properties. IEEE Photonics J. (2013). CrossRefGoogle Scholar
  10. Hashimoto, K., Irie, H., Fujishima, A.: TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)ADSCrossRefGoogle Scholar
  11. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  12. Huang, F., Xie, B., Wu, B., Shao, L., Li, M., Wang, H., Jiang, Y., Song, Y.: Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. Appl. Surf. Sci. 255, 6781–6785 (2009)ADSCrossRefGoogle Scholar
  13. ISO 10678: Fine ceramics, advanced technical ceramics—determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue, p. 2010. ISO, Geneva (2010)Google Scholar
  14. Jung, J.M., Wang, M., Kim, E.J., Hahn, S.H.: Photocatalytic properties of Au/TiO2 thin films prepared by RF magnetron co-sputtering. Vacuum 82, 827–832 (2008a)ADSCrossRefGoogle Scholar
  15. Jung, J.M., Wang, M., Kim, E.J., Park, C., Hahn, S.H.: Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering. Appl. Catal. B 84, 389–392 (2008b)CrossRefGoogle Scholar
  16. Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., Anandi, V.: Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J. Colloid Interface Sci. 352, 68–74 (2010)ADSCrossRefGoogle Scholar
  17. Kavei, G., Ahmadi, K., Kavei, A.: Self cleaning on photocatalyst basis of nano-crystalline TiO2 thin film prepared by spray pyrolysis. Trans. Indian Ceram. Soc. 71(1), 31–38 (2012)CrossRefGoogle Scholar
  18. Kavei, G., Ahmadi, K., Khakpoor, A.A.: Oxide glasses doped with silver nanoparticles: properties and technologies. Int. Mater. Phys. J. 1(1), 40–46 (2013)Google Scholar
  19. Khakpoor, A.A., Borjian, R., Hoseinzade, M.: Optical properties improvement TiO2 thin films with adding the Au, Ag or Cu nanoparticles. Int. Mater. Phys. J. 1(2), 8–13 (2013)Google Scholar
  20. Lee, Y.C., Hong, Y.P., Lee, H.Y., Kim, H., Jung, Y.J., Ko, K.H., Jung, H.S., Hong, K.S.: Photocatalysis and hydrophilicity of doped TiO2 thin films. J. Colloid Interface Sci. 267, 127–131 (2003)ADSCrossRefGoogle Scholar
  21. Lee, S.H., Yamasue, E., Okumura, H., Ishihara, K.N.: Effect of substrate roughness and working pressure on photocatalyst of N-doped TiOx films prepared by reactive sputtering with air. Appl. Surf. Sci. 324, 339–348 (2015)ADSCrossRefGoogle Scholar
  22. Mills, A., Hill, C., Robertson, P.K.: Overview of the current ISO tests for photocatalytic materials. J. Photochem. Photobiol. A 237, 7–23 (2012)CrossRefGoogle Scholar
  23. Mohamed, R.M., McKinney, D.L., Sigmund, W.M.: Enhanced nanocatalysts. Mater. Sci. Eng. R Rep. 73, 1–13 (2012)CrossRefGoogle Scholar
  24. Ndong, L.B., Ibondou, M.P., Gu, X., Lu, S., Qiu, Z., Sui, Q., Mbadinga, S.M.: Enhanced photocatalytic activity of TiO2 nanosheets by doping with Cu for chlorinated solvent pollutants degradation. Ind. Eng. Chem. Res. 53, 1368–1376 (2014)CrossRefGoogle Scholar
  25. Pongwan, P., Wetchakun, K., Phanichphant, S., Wetchakun, N.: Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res. Chem. Intermed. 42(4), 2815–2830 (2016)CrossRefGoogle Scholar
  26. Tryba, B., Orlikowski, J., Wróbel, R.J., Przepiórski, J., Morawski, A.W.: Preparation and characterization of rutile-type TiO2 doped with Cu. JMEPEG 24, 1243–1252 (2015)ADSCrossRefGoogle Scholar
  27. Tsai, C.Y., His, H.C., Kuo, T.H., Chang, Y.M., Liou, J.H.: Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal. Aerosol Air Qual. Res. 13, 639–648 (2013)CrossRefGoogle Scholar
  28. Yu, J., Zhao, X., Zhao, Q.: Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater. Chem. Phys. 69, 25–29 (2001)CrossRefGoogle Scholar
  29. Zaleska, A.: Doped-TiO2: a review. Recent Pat. Eng. 2, 157–164 (2008)CrossRefGoogle Scholar
  30. Zhang, J., Zhou, P., Liu, J., Yu, J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sara Mortazavi
    • 1
  • Ali Asghar Khakpoor
    • 1
    Email author
  • Atiye Mehrzad
    • 1
  • Amir Sajadimehr
    • 1
  1. 1.Department of Physics, Central Tehran BranchIslamic Azad University, (IAUCTB)TehranIran

Personalised recommendations