Improvement in dye sensitized solar cells from past to present

  • Obaidullah Mohiuddin
  • Madina Obaidullah
  • Cumali SabahEmail author


Several emerging renewable technologies are available to satisfy the current energy demand and to minimize the effect of environmental degradation caused by high consumption of fossil fuels. These technologies are not mature enough to solve this problem but require more time for improving the efficiency, and cost reduction to become the economical alternative of fossil fuels. In this paper Dye-sensitized solar cell (DSSC) has been discussed in detail owing to advancement in the technology. Since each component of DSSC is responsible for a specific function, therefore, comprehensive literature studies has been done on individual section to understand the technology in depth. All the advancement in sensitizer, semiconductors, electrolyte, electrodes, additives, sealing and anchoring groups are included in this review with performance parameter of DSSC. Focus of this article is to provide summary of all available literature since beginning to date.


DSSC Sensitizer Semiconductors Counter-electrode Additives Anchoring group 


  1. “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954Google Scholar
  2. Al-Alwani, M.A.M., Mohamad, A.B., Ludin, N.A., Kadhum, A.A.H., Sopian, K.: Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew. Sustain. Energy Rev. 65, 183–213 (2016)Google Scholar
  3. Altobello, S., et al.: Sensitization of TiO2 with ruthenium complexes containing boronic acid functions. J. Photochem. Photobiol. Chem. 166(1–3), 91–98 (2004)Google Scholar
  4. Athanas, A.B., Thangaraj, S., Kalaiyar, S.: Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes. Chem. Phys. Lett. 699, 32–39 (2018)ADSGoogle Scholar
  5. Bach, U., et al.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)ADSGoogle Scholar
  6. Bagher, A.M.: Introduction to organic solar cells. Sustain. Energy Sustain. Energy 2(3), 85–90 (2014)Google Scholar
  7. Bai, Y., et al.: High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7(8), 626–630 (2008)ADSGoogle Scholar
  8. Bay, L., West, K., Winther-Jensen, B., Jacobsen, T.: Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 90(3), 341–351 (2006)Google Scholar
  9. Boschloo, G., Häggman, L., Hagfeldt, A.: Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J. Phys. Chem. B 110(26), 13144–13150 (2006)Google Scholar
  10. Breckenridge, R.G., Hosler, W.R.: Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91(4), 793–802 (1953)ADSGoogle Scholar
  11. Brewster, T.P., et al.: Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg. Chem. 52(11), 6752–6764 (2013)Google Scholar
  12. Burfeindt, B., Hannappel, T., Storck, W., Willig, F.: Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J. Phys. Chem. 100(41), 16463–16465 (1996)Google Scholar
  13. Calestani, D., et al.: Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B Chem. 144(2), 472–478 (2010)Google Scholar
  14. Calestani, D., Zha, M.Z., Zanotti, L., Villani, M., Zappettini, A.: Low temperature thermal evaporation growth of aligned ZnO nanorods on ZnO film: a growth mechanism promoted by Zn nanoclusters on polar surfaces. CrystEngComm 13(5), 1707–1712 (2011)Google Scholar
  15. Calogero, G., Marco, G.D., Caramori, S., Cazzanti, S., Argazzi, R., Alberto Bignozzi, C.: Natural dye senstizers for photoelectrochemical cells. Energy Environ. Sci. 2(11), 1162–1172 (2009)Google Scholar
  16. Calogero, G., et al.: Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int. J. Mol. Sci. 11(1), 254–267 (2010)Google Scholar
  17. Chava, R.K., Kang, M.: Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017)Google Scholar
  18. Chava, R.K., Lee, W.-M., Oh, S.-Y., Jeong, K.-U., Yu, Y.-T.: Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells 161, 255–262 (2017)Google Scholar
  19. Chen, Y., Zeng, Z., Li, C., Wang, W., Wang, X., Zhang, B.: Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J. Chem. 29(6), 773–776 (2005)Google Scholar
  20. Chen, C.-Y., et al.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10), 3103–3109 (2009)Google Scholar
  21. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(2), L638–L640 (2006)ADSGoogle Scholar
  22. Choi, H., et al.: Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells. Angew. Chem. Int. Ed. 47(43), 8259–8263 (2008)Google Scholar
  23. Clifford, J.N., Palomares, E., Nazeeruddin, M.K., Thampi, R., Grätzel, M., Durrant, J.R.: Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J. Am. Chem. Soc. 126(18), 5670–5671 (2004)Google Scholar
  24. Cong, J., et al.: Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chem. Commun. 48(53), 6663–6665 (2012)Google Scholar
  25. Daeneke, T., et al.: Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Adv. Mater. 24(9), 1222–1225 (2012)Google Scholar
  26. De Marco, L., et al.: Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Sol. Energy Mater. Sol. Cells 168, 227–233 (2017)ADSGoogle Scholar
  27. Desilvestro, J., Graetzel, M., Kavan, L., Moser, J., Augustynski, J.: Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc. 107(10), 2988–2990 (1985)Google Scholar
  28. Desta et al. M.B.: Pyrazine-incorporating panchromatic sensitizers for dye sensitized solar cells under one sun and dim light J. Mater. Chem. A 2018Google Scholar
  29. Dhamodharan, P., Manoharan, C., Dhanapandian, S., Venkatachalam, P.: Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 136, 1671–1678 (2015)ADSGoogle Scholar
  30. Dumbravă, A., et al.: Dye-sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J. Optoelectron. Adv. Mater. 10(11), 2996–3002 (2008)Google Scholar
  31. Edvinsson, T., et al.: Intramolecular charge-transfer tuning of perylenes: spectroscopic features and performance in dye-sensitized solar cells. J. Phys. Chem. C 111(42), 15137–15140 (2007)Google Scholar
  32. Ellis, H.: Characterization of dye-sensitized solar cells: Components for environmentally friendly photovoltaics 2014Google Scholar
  33. Elmorsy, M.R., Su, R., Fadda, A.A., Etman, H.A., Tawfik, E.H., El-Shafei, A.: Co-sensitization of Ru(II) complex with terthiophene-based D–p–p–A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance. New J. Chem. 42(14), 11430–11437 (2018)Google Scholar
  34. Fabregat-Santiago, F., et al.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111(17), 6550–6560 (2007)Google Scholar
  35. Fakharuddin, A., Jose, R., Brown, T.M., Fabregat-Santiago, F., Bisquert, J.: A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7(12), 3952–3981 (2014)Google Scholar
  36. Fernando, J., Senadeera, G.K.R.: Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr. Sci. 95(5), 663–666 (2008)Google Scholar
  37. Ferrere, S., Gregg, B.A.: New perylenes for dye sensitization of TiO2. New J. Chem. 26(9), 1155–1160 (2002)Google Scholar
  38. Ferrere, S., Zaban, A., Gregg, B.A.: Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 101(23), 4490–4493 (1997)Google Scholar
  39. Fukai, Y., Kondo, Y., Mori, S., Suzuki, E.: Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochem. Commun. 9(7), 1439–1443 (2007)Google Scholar
  40. Furukawa, S., Iino, H., Iwamoto, T., Kukita, K., Yamauchi, S.: Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2), 526–529 (2009)ADSGoogle Scholar
  41. Gerischer, H., Michel-Beyerle, M.E., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)Google Scholar
  42. Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16(8), 5848–5860 (2012)Google Scholar
  43. Gonzalez-Valls, I., Lira-Cantu, M.: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2(1), 19–34 (2009)Google Scholar
  44. Gorlov, M., Pettersson, H., Hagfeldt, A., Kloo, L.: Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorg. Chem. 46(9), 3566–3575 (2007)Google Scholar
  45. Gou, F., Jiang, X., Fang, R., Jing, H., Zhu, Z.: Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group. ACS Appl. Mater. Interfaces. 6(9), 6697–6703 (2014)Google Scholar
  46. Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004)Google Scholar
  47. Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)Google Scholar
  48. Grätzel, M.: The advent of mesoscopic injection solar cells. Prog. Photovolt. Res. Appl. 14(5), 429–442 (2006)Google Scholar
  49. Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11), 1788–1798 (2009)Google Scholar
  50. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015)Google Scholar
  51. Greijer Agrell, H., Boschloo, G., Hagfeldt, A.: Conductivity studies of nanostructured TiO2 films permeated with electrolyte. J. Phys. Chem. B 108(33), 12388–12396 (2004)Google Scholar
  52. Gu, P., Yang, D., Zhu, X., Sun, H., Li, J.: Performance of dye-sensitized solar cells based on natural dyes. Opt. Quantum Electron. 50(5) 2018Google Scholar
  53. Guo, X., et al.: Polymer solar cells with enhanced fill factors. Nat. Photonics 7(10), 825–833 (2013)ADSGoogle Scholar
  54. Hagfeldt, A., Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)Google Scholar
  55. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)Google Scholar
  56. Halme, J., Vahermaa, P., Miettunen, K., Lund, P.: Device physics of dye solar cells. Adv. Mater. 22(35), E210–E234 (2010)Google Scholar
  57. Hao, S., Wu, J., Huang, Y., Lin, J.: Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80(2), 209–214 (2006)ADSGoogle Scholar
  58. Hardin, B.E., et al.: Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. J. Am. Chem. Soc. 133(27), 10662–10667 (2011)Google Scholar
  59. Hashmi, G., et al.: Review of materials and manufacturing options for large area flexible dye solar cells. Renew. Sustain. Energy Rev. 15(8), 3717–3732 (2011)Google Scholar
  60. Hattori, S., Wada, Y., Yanagida, S., Fukuzumi, S.: Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 127(26), 9648–9654 (2005)Google Scholar
  61. Hauch, A., Georg, A.: Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)Google Scholar
  62. He, Z., et al.: Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011)Google Scholar
  63. He, H., Gurung, A., Si, L.: 8-Hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 48(47), 5910–5912 (2012)Google Scholar
  64. Heng, L., Wang, X., Yang, N., Zhai, J., Wan, M., Jiang, L.: p–n-junction-based flexible dye-sensitized solar cells. Adv. Funct. Mater. 20(2), 266–271 (2010)Google Scholar
  65. Hilal, H.M., El Bitar Nehme, M.A., Ghaddar, T.H.: Large Enhancement of Dye Sensitized Solar Cell Efficiency by Co-sensitizing Pyridyl- and Carboxylic Acid-Based Dyes. ACS Appl. Energy Mater. 1(6), 2776–2783 (2018)Google Scholar
  66. Hosseinnezhad, M., Rouhani, S., Gharanjig, K.: Extraction and application of natural pigments for fabrication of green dye-sensitized solar cells. Opto-Electron. Rev. 26(2), 165–171 (2018)Google Scholar
  67. Huang, S.Y., Schlichthörl, G., Nozik, A.J., Grätzel, M., Frank, A.J.: Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101(14), 2576–2582 (1997)Google Scholar
  68. Hwang, S., et al.: A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 46, 4887–4889 (2007)Google Scholar
  69. Insuasty, A., Ortiz, A., Tigreros, A., Solarte, E., Insuasty, B., Martín, N.: 2-(1,1-dicyanomethylene)rhodanine: a novel, efficient electron acceptor. Dyes Pigments 88(3), 385–390 (2011)Google Scholar
  70. Gong, J., Sumathy, K., Qiao, Q., Zhou, Z.: Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev., 68 Part 1, pp. 234–246, (2017)Google Scholar
  71. Jamalullail, N., Smohamad, I., Nnorizan, M., Mahmed, N.: Enhancement of energy conversion efficiency for dye sensitized solar cell using zinc oxide photoanode. IOP Conf. Ser. Mater. Sci. Eng. 374, 012048 (2018)Google Scholar
  72. Jayaweera, P.M., Kumarasinghe, A.R., Tennakone, K.: Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/p-I −/I3 − (or CuI)]. J. Photochem. Photobiol. Chem. 126(1–3), 111–115 (1999)Google Scholar
  73. Jono, R., Fujisawa, J., Segawa, H., Yamashita, K.: Theoretical study of the surface complex between TiO2 and TCNQ showing interfacial charge-transfer transitions. J. Phys. Chem. Lett. 2(10), 1167–1170 (2011)Google Scholar
  74. Jose, R., Thavasi, V., Ramakrishna, S.: Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)Google Scholar
  75. Karlsson, K.M.: Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar Cells 2011Google Scholar
  76. Kakiuchi, K., Hosono, E., Fujihara, S.: Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J. Photochem. Photobiol. Chem. 179(1–2), 81–86 (2006)Google Scholar
  77. Kay, A., Graetzel, M.: Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97(23), 6272–6277 (1993)Google Scholar
  78. Kay, A., Grätzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)Google Scholar
  79. Keis, K., Magnusson, E., Lindström, H., Lindquist, S.-E., Hagfeldt, A.: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73(1), 51–58 (2002)Google Scholar
  80. Kelly, C.A., Farzad, F., Thompson, D.W., Stipkala, J.M., Meyer, G.J.: Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2. Langmuir 15(20), 7047–7054 (1999)Google Scholar
  81. Khan, M.: A Study on the Optimization of Dye-Sensitized Solar Cells. Grad. Theses Diss. 2013Google Scholar
  82. Khanmohammadi, K., Sohrabi, B., Zamani Meymian, M.R.: Effect of electron-donating and -withdrawing substitutions in naphthoquinone sensitizers: the structure engineering of dyes for DSSCs. J. Mol. Struct. 1167, 274–279 (2018)ADSGoogle Scholar
  83. Kopidakis, N., Neale, N.R., Frank, A.J.: Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. J. Phys. Chem. B 110(25), 12485–12489 (2006)Google Scholar
  84. Kron, G., Egerter, T., Werner, J.H., Rau, U.: Electronic transport in dye-sensitized nanoporous TiO2 solar cellscomparison of electrolyte and solid-state devices. J. Phys. Chem. B 107(15), 3556–3564 (2003)Google Scholar
  85. Kumara, G.R.A., Kaneko, S., Okuya, M., Onwona-Agyeman, B., Konno, A., Tennakone, K.: Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90(9), 1220–1226 (2006)Google Scholar
  86. Lai, W.H., Su, Y.H., Teoh, L.G., Hon, M.H.: Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. Chem. 195(2–3), 307–313 (2008)Google Scholar
  87. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)ADSGoogle Scholar
  88. Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006a)Google Scholar
  89. Li, J., Osasa, T., Hirayama, Y., Sano, T., Wakisaka, K., Matsumura, M.: Solid-state dye-sensitized solar cells using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a hole-transporting material. Jpn. J. Appl. Phys. 45(11), 8728–8732 (2006b)ADSGoogle Scholar
  90. Li, C., et al.: An improved perylene sensitizer for solar cell applications. Chemsuschem 1(7), 615–618 (2008)Google Scholar
  91. Li, S.-F., Yang, X.-C., Cheng, M., Zhao, J.-H., Wang, Y., Sun, L.-C.: Novel D–π–A type II organic sensitizers for dye sensitized solar cells. Tetrahedron Lett. 53(27), 3425–3428 (2012)Google Scholar
  92. Li, P., Song, C., Wang, Z., Li, J., Zhang, H.: Molecular design towards suppressing electron recombination and enhancing the light-absorbing ability of dyes for use in sensitized solar cells: a theoretical investigation. New J. Chem. 2018Google Scholar
  93. Lu, F., Yang, G., Xu, Q., Zhang, J., Zhang, B., Feng, Y.: Tailoring the benzotriazole (BTZ) auxiliary acceptor in a D-A′-π-A type sensitizer for high performance dye-sensitized solar cells (DSSCs). Dyes Pigments 158, 195–203 (2018)Google Scholar
  94. Luo, P., Niu, H., Zheng, G., Bai, X., Zhang, M., Wang, W.: From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 74(4), 936–942 (2009)ADSGoogle Scholar
  95. Marszalek, M.A.: Dye-sensitized Solar Cells: Detailed Studies Focused on the Molecular Engineering of D-[pi]-A Dyes and the Optimization of the Application of Ionic-liquid-based Electrolytes 2013Google Scholar
  96. Marinado, T., et al.: Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys. 11(1), 133–141 (2008)Google Scholar
  97. Martinson, A.B., Elam, J.W., Hupp, J.T., Pellin, M.J.: ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7(8), 2183–2187 (2007)ADSGoogle Scholar
  98. Massin, J., Ducasse, L., Toupance, T., Olivier, C.: Tetrazole as a new anchoring group for the functionalization of TiO2 nanoparticles: a joint experimental and theoretical study. J. Phys. Chem. C 118(20), 10677–10685 (2014)Google Scholar
  99. McNamara, W.R., et al.: Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)—terpyridine complexes. J. Am. Chem. Soc. 130(43), 14329–14338 (2008)Google Scholar
  100. McNamara, W.R., et al.: Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy Environ. Sci. 2(11), 1173–1175 (2009)Google Scholar
  101. McNamara, W.R., et al.: Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ. Sci. 3(7), 917–923 (2010)Google Scholar
  102. Memarian, N., Concina, I., Braga, A., Rozati, S.M., Vomiero, A., Sberveglieri, G.: Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. 123(51), 12529–12533 (2011)Google Scholar
  103. Michinobu, T., Satoh, N., Cai, J., Li, Y., Han, L.: Novel design of organic donor–acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. J. Mater. Chem. C 2(17), 3367–3372 (2014)Google Scholar
  104. Miettunen, K., Vapaavuori, J., Poskela, A., Tiihonen, A., Lund, P.D.: Recent progress in flexible dye solar cells. Wiley Interdiscip. Rev. Energy Environ., p. e302, May 2018Google Scholar
  105. Mishra, A., Fischer, M.K.R., Bäuerle, P.: Metal-Free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48(14), 2474–2499 (2009)Google Scholar
  106. Moreira Gonçalves, L., Bermudez, V., AguilarRibeiro, H., Magalhães Mendes, A.: Dye -sensitized solar cells: a safe bet for the future. Energy Environ. Sci. 1(6), 655–667 (2008)Google Scholar
  107. Moser, J.: Note about the gain photoelectric currents by optical sensitization. Monatsh. Chem. 8, 373 (1887)Google Scholar
  108. Mozaffari, S., Nateghi, M.R., Zarandi, M.B.: An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71, 675–686 (2017)Google Scholar
  109. Murakoshi, K., Kogure, R., Wada, Y., Yanagida, S.: Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 26(5), 471–472 (1997)Google Scholar
  110. Nazeeruddin, M.K., et al.: Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)Google Scholar
  111. Nazeeruddin, M.K., Pechy, P., Grätzel, M.: Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. Chem. Commun. 18, 1705–1706 (1997)Google Scholar
  112. Nazeeruddin, M.K., et al.: Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123(8), 1613–1624 (2001)Google Scholar
  113. Nazeeruddin, M.K., Humphry-Baker, R., Officer, D.L., Campbell, W.M., Burrell, A.K., Grätzel, M.: Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15), 6514–6517 (2004)Google Scholar
  114. Nazeeruddin, M.K., Klein, C., Liska, P., Grätzel, M.: Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coord. Chem. Rev. 249(13–14), 1460–1467 (2005)Google Scholar
  115. Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85(6), 1172–1178 (2011)ADSGoogle Scholar
  116. Nguyen, P.T., Nguyen, N.P.D., Nguyen, L.T.: 4,4′-dinonyl-2,2′-bipyridine as an alternative electrolyte additive for improving the thermal stability of ruthenium dyes in dye-sensitized solar cells. J. Phys. Chem. Solids 122, 234–238 (2018)ADSGoogle Scholar
  117. O’Regan, B., Schwartz, D.T.: Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper (I) thiocyanate thin films. Chem. Mater. 7(7), 1349–1354 (1995)Google Scholar
  118. O’regan, B., Grfitzeli, M.: A low-cost, high-efficiency solar cell based on dye-sensitized. nature, vol. 353, no. 6346, pp. 737–740, 1991ADSGoogle Scholar
  119. Odobel, F., Pellegrin, Y., Warnan, J.: Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye -sensitized solar cells. Energy Environ. Sci. 6(7), 2041–2052 (2013)Google Scholar
  120. Olea, A., Ponce, G., Sebastian, P.J.: Electron transfer via organic dyes for solar conversion. Sol. Energy Mater. Sol. Cells 59(1–2), 137–143 (1999)Google Scholar
  121. Ooyama, Y., Hagiwara, Y., Oda, Y., Mizumo, T., Harima, Y., Ohshita, J.: Dye-sensitized solar cells based on a functionally separated D–π–A fluorescent dye with an aldehyde as an electron-accepting group. New J. Chem. 37(8), 2336–2340 (2013)Google Scholar
  122. Ooyama, Y., Yamada, T., Fujita, T., Harima, Y., Ohshita, J.: Development of D–π–Cat fluorescent dyes with a catechol group for dye-sensitized solar cells based on dye-to-TiO2 charge transfer. J. Mater. Chem. A 2(22), 8500–8511 (2014)Google Scholar
  123. Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C.: Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105(29), 6867–6873 (2001)Google Scholar
  124. Ozser, M.E., Mohiuddin, O.: Synthesis, photophysical, structural and electronic properties of novel regioisomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives. J. Mol. Struct. 1158, 145–155 (2018)ADSGoogle Scholar
  125. Ozser, M.E., Sarkodie, S.A., Mohiuddin, O., Ozesme, G.: Novel derivatives of regioisomerically pure 1,7-disubstituted perylene diimide dyes bearing phenoxy and pyrrolidinyl substituents: synthesis, photophysical, thermal, and structural properties. J. Lumin. 192, 414–423 (2017)Google Scholar
  126. Papageorgiou, N., et al.: The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143(10), 3099–3108 (1996)Google Scholar
  127. Park, H., Bae, E., Lee, J.-J., Park, J., Choi, W.: Effect of the anchoring group in Ru—bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. J. Phys. Chem. B 110(17), 8740–8749 (2006)Google Scholar
  128. Parks, G.A.: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65(2), 177–198 (1965)Google Scholar
  129. Parsa, Z., Naghavi, S.S, Safari N.: Designing Push–Pull Porphyrins for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. A, Jul. 2018Google Scholar
  130. Patil, D., et al.: A new class of triphenylamine-based novel sensitizers for DSSCs: a comparative study of three different anchoring groups. New J. Chem. 42(14), 11555–11564 (2018)Google Scholar
  131. Peter, L.M.: Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007)Google Scholar
  132. Pettersson, H., et al.: The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 15(2), 113–121 (2007)MathSciNetGoogle Scholar
  133. Polo, A.S., Murakami Iha, N.Y.: Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 90(13), 1936–1944 (2006)Google Scholar
  134. Pugliese D.: New insights in Dye-sensitized Solar Cells: novel nanostructured photoanodes, metal-free dye, quasi-solid electrolytes and physics-based modeling. Ph.D., Politecnico di Torino, 2014Google Scholar
  135. Pullerits, T., Sundström, V.: Photosynthetic light-harvesting pigment—protein complexes: toward understanding how and why. Acc. Chem. Res. 29(8), 381–389 (1996)Google Scholar
  136. Punitharasu, V., Mele Kavungathodi, M.F., Nithyanandhan, J.: Self-assembly of Cis-configured squaraine dyes at the TiO2 -dye interface: far-red active dyes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 10(19), 16541–16551 (2018)Google Scholar
  137. Qi, B., Wang, J.: Open-circuit voltage in organic solar cells. J. Mater. Chem. 22(46), 24315–24325 (2012)Google Scholar
  138. Qi, B., Wang, J.: Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 15(23), 8972–8982 (2013)Google Scholar
  139. Qian, J., et al.: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21(36), 3663–3667 (2009)Google Scholar
  140. Ramasamy, E., Lee, J.: Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 114(50), 22032–22037 (2010)Google Scholar
  141. Ravirajan, P., et al.: Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110(15), 7635–7639 (2006)Google Scholar
  142. Redfern, P.C., Zapol, P., Curtiss, L.A., Rajh, T., Thurnauer, M.C.: Computational studies of catechol and water interactions with titanium oxide nanoparticles. J. Phys. Chem. B 107(41), 11419–11427 (2003)Google Scholar
  143. Redmond, G., Fitzmaurice, D., Graetzel, M.: Visible light sensitization by cis-bis(thiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol–gel techniques. Chem. Mater. 6(5), 686–691 (1994)Google Scholar
  144. Rekioua, D., Matagne, E.: “Photovoltaic Applications Overview”, in Optimization of Photovoltaic Power Systems, pp. 1–29. Springer, London (2012)Google Scholar
  145. Richhariya, G., Kumar, A.: Fabrication and characterization of mixed dye: natural and synthetic organic dye. Opt. Mater. 79, 296–301 (2018)ADSGoogle Scholar
  146. Richhariya, G., Kumar, A., Tekasakul, P., Gupta, B.: Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017)Google Scholar
  147. Sahu, G.: Investigating the Electron Transport and Light Scattering Enhancement in Radial Core-Shell Metal-Metal Oxide Novel 3D Nanoarchitectures for Dye Sensitized Solar Cells. Univ. New Orleans Theses Diss., May 2012Google Scholar
  148. Saito, M., Fujihara, S.: Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 1(2), 280–283 (2008)Google Scholar
  149. Saito, Y., Kitamura, T., Wada, Y., Yanagida, S.: Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 31(10), 1060–1061 (2002)Google Scholar
  150. Sandquist, C., McHale, J.L.: Improved efficiency of betanin-based dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 221(1), 90–97 (2011)Google Scholar
  151. Sanjay, P., Deepa, K., Madhavan, J., Senthil, S.: Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO based dye sensitized solar cells. Opt. Mater. 83, 192–199 (2018)ADSGoogle Scholar
  152. Sapp, S.A., Elliott, C.M., Contado, C., Caramori, S., Bignozzi, C.A.: Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124(37), 11215–11222 (2002)Google Scholar
  153. Shahroosvand, H., Abbasi, P., Bideh, B.N.: Dye-sensitized solar cell based on novel star-shaped ruthenium polypyridyl sensitizer: new insight into the relationship between molecular designing and its outstanding charge carrier dynamics. ChemistrySelect 3(24), 6821–6829 (2018)Google Scholar
  154. Sharma, S., Siwach, B., Ghoshal, S.K., Mohan, D.: Dye sensitized solar cells: from genesis to recent drifts. Renew. Sustain. Energy Rev. 70, 529–537 (2017)Google Scholar
  155. Shen, X., Xu, W., Xu, J., Liang, G., Yang, H., Yao, M.: Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ion. 179(35–36), 2027–2030 (2008)Google Scholar
  156. Sinha, D., De, D., Ayaz, A.: Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 193, 467–474 (2018)ADSGoogle Scholar
  157. Sirimanne, P.M., Senevirathna, M.K.I., Premalal, E.V.A., Pitigala, P.K.D.D.P., Sivakumar, V., Tennakone, K.: Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells. J. Photochem. Photobiol. Chem. 177(2–3), 324–327 (2006)Google Scholar
  158. Somani, P.R., Radhakrishnan, S.: Solid state electrochemical reaction in photocells made using conducting polyaniline and sensitized with methylene blue. J. Solid State Electrochem. 7(3), 166–170 (2003)Google Scholar
  159. Tan, B., Toman, E., Li, Y., Wu, Y.: Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129(14), 4162–4163 (2007)Google Scholar
  160. Tang, J., Qu, S., Hu, J., Wu, W., Hua, J.: A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Sol. Energy 86(9), 2306–2311 (2012)ADSGoogle Scholar
  161. Tennakone, K., Kumara, G.R.R.A., Kumarasinghe, A.R., Wijayantha, K.G.U., Sirimanne, P.M.: A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10(12), 1689–1693 (1995)ADSGoogle Scholar
  162. Tiwari, A., Snure, M.: Synthesis and characterization of ZnO nano-plant-like electrodes. J. Nanosci. Nanotechnol. 8(8), 3981–3987 (2008)Google Scholar
  163. Tributsch, H.: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis*. Photochem. Photobiol. 16(4), 261–269 (1972)Google Scholar
  164. Tributsch, H., Calvin, M.: Electrochemistry of excited molecules: photo-electrochemical reactions of chlorophylls*. Photochem. Photobiol. 14(2), 95–112 (1971)Google Scholar
  165. Tributsch, H., Gerischer, H.: The use of semiconductor electrodes in the study of photochemical reactions. Berichte Bunsenges. Für Phys. Chem. 73(8–9), 850–854 (1969)Google Scholar
  166. Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T.: Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261(5559), 402–403 (1976)ADSGoogle Scholar
  167. Tulloch, G.E.: Light and energy—dye solar cells for the 21st century. J. Photochem. Photobiol. Chem. 164(1–3), 209–219 (2004)Google Scholar
  168. Vlachopoulos, N., Liska, P., Augustynski, J., Grätzel, M.: Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 110(4), 1216–1220 (1988)Google Scholar
  169. Vo, A.Q.: Degradation of the solar cell dye sensitizer N719. Preliminary building of the dye-sensitized solar cells, 2006Google Scholar
  170. Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)Google Scholar
  171. Wang, P., Zakeeruddin, S.M., Moser, J.-E., Humphry-Baker, R., Grätzel, M.: A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J. Am. Chem. Soc. 126(23), 7164–7165 (2004)Google Scholar
  172. Wang, P., Klein, C., Humphry-Baker, R., Zakeeruddin, S.M., Graetzel, M.: A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc. 127(3), 808–809 (2005a)Google Scholar
  173. Wang, X.-F., et al.: Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers. Chem. Phys. Lett. 408(4–6), 409–414 (2005b)ADSGoogle Scholar
  174. Wang, Z.-S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., Hara, K.: Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. J. Phys. Chem. C 112(43), 17011–17017 (2008)Google Scholar
  175. Wang, L., Yang, X., Li, S., Cheng, M., Sun, L.: A new type of organic sensitizers with pyridine-N-oxide as the anchoring group for dye-sensitized solar cells. RSC Adv. 3(33), 13677–13680 (2013)Google Scholar
  176. Wang, L., Yang, X., Zhao, J., Zhang, F., Wang, X., Sun, L.: Efficient organic sensitizers with pyridine-N-oxide as an anchor group for dye-sensitized solar cells. Chemsuschem 7(9), 2640–2646 (2014)Google Scholar
  177. Warnan, J., et al.: Ruthenium sensitizer functionalized by acetylacetone anchoring groups for dye-sensitized solar cells. J. Phys. Chem. C 117(17), 8652–8660 (2013)Google Scholar
  178. Wongcharee, K., Meeyoo, V., Chavadej, S.: Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energy Mater. Sol. Cells 91(7), 566–571 (2007)Google Scholar
  179. Wu, J., et al.: Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46(19), 5975–6023 (2017)Google Scholar
  180. Xiang, J.H., Zhu, P.X., Masuda, Y., Okuya, M., Kaneko, S., Koumoto, K.: Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process. J. Nanosci. Nanotechnol. 6(6), 1797–1801 (2006)Google Scholar
  181. Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M., Kurita, O.: Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol. Energy 81(4), 512–516 (2007)ADSGoogle Scholar
  182. Yan, Z., Guang, S., Su, X., Xu, H.: Near-infrared absorbing squaraine dyes for solar cells: relationship between architecture and performance. J. Phys. Chem. C 116(16), 8894–8900 (2012)Google Scholar
  183. Yella, A., et al.: Porphyrin-sensitized solar cells with cobalt (ii/iii)–based redox electrolyte exceed 12% efficiency. Science 334(6056), 629–634 (2011)ADSGoogle Scholar
  184. Yum, J.-H., et al.: Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem. Commun. 44, 4680–4682 (2007)Google Scholar
  185. Zafer, C., et al.: New perylene derivative dyes for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(5), 427–431 (2007)Google Scholar
  186. Zakeeruddin, S.M., Grätzel, M.: Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. Adv. Funct. Mater. 19(14), 2187–2202 (2009)Google Scholar
  187. Zanni, MT., Greenblatt, B.J., Davis, A.V., Neumark, D.M.: Photodissociation of gas phase I3 − using femtosecond photoelectron spectroscopy. J. Chem. Phys. 111(7), 2991–3003 (1999)ADSGoogle Scholar
  188. Zhang, L., Cole, J.M.: Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 7(6), 3427–3455 (2015)Google Scholar
  189. Zhang, Z., Evans, N., Zakeeruddin, S.M., Humphry-Baker, R., Grätzel, M.: Effects of ω-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells. J. Phys. Chem. C 111(1), 398–403 (2007)Google Scholar
  190. Zhang, D., Lanier, S.M., Downing, J.A., Avent, J.L., Lum, J., McHale, J.L.: Betalain pigments for dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 195(1), 72–80 (2008)Google Scholar
  191. Zhang, C., Huang, Y., Huo, Z., Chen, S., Dai, S.: Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability. J. Phys. Chem. C 113(52), 21779–21783 (2009)Google Scholar
  192. Zhang, L., Cole, J.M., Waddell, P.G., Low, K.S., Liu, X.: Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1(11), 1440–1452 (2013)Google Scholar
  193. Zhang, L., Cole, J.M., Dai, C.: Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Appl. Mater. Interfaces. 6(10), 7535–7546 (2014)Google Scholar
  194. Zhao, J., Yang, X., Cheng, M., Li, S., Sun, L.: Molecular design and performance of hydroxylpyridium sensitizers for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 5(11), 5227–5231 (2013)Google Scholar
  195. Zhou, H., Wu, L., Gao, Y., Ma, T.: Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. Chem. 219(2–3), 188–194 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Middle East Technical University-Northern Cyprus Campus (METU-NCC), Sustainable Environment and Energy SystemsKalkanli, GuzelyurtTurkey
  2. 2.Department of Electrical and Electronics EngineeringMiddle East Technical University-Northern Cyprus Campus (METU-NCC)Kalkanli, GuzelyurtTurkey
  3. 3.Middle East Technical University-Northern Cyprus Campus (METU-NCC), Kalkanli Technology Valley (KALTEV)Kalkanli, GuzelyurtTurkey

Personalised recommendations