Advertisement

Investigation of dependence the hole radius formed in InGaP on the group velocity, quality factor and defect band structures

  • Latef M. Ali
  • Farah A. Abed
Article
  • 41 Downloads

Abstract

In this paper, the structure being investigated consists of periodic layers of InGaP containing a defect region in air hole and GaAs. Finite difference time-domain calculations were performed to show the influences of hole radius on the group velocity (\( V_{g} \)), quality (\( Q \)) factor and transmission of the structure. As well as effect the hole radius deviation on the \( Q \) factor. Also, we will investigate property of the defect region on the band structures.

Keywords

Group velocity Quality factor Defect band structure Transmission Hole radius 

References

  1. Aharonovich, I., Greentree, A.D., Prawer, S.: Diamond photonics. Nat. Photon. 5, 397–405 (2011)ADSCrossRefGoogle Scholar
  2. Ali, L.M.: Simulation of Q-factor, bandgap frequency and defect band structure dependence upon hole radius of air formed in InxGa1-xAs waveguides. Int. J. Mod. Phys. B 30, 1650144 (2016)ADSCrossRefGoogle Scholar
  3. Astratov, V.N., Stevenson, R.M., Culshaw, I.S., Whittaker, D.M., Skolnick, M.S., Krauss, T.F., de la Rue, R.M.: Heavy photon dispersions in photonic crystal waveguides. Appl. Phys. Lett. 77, 178–180 (2000)ADSCrossRefGoogle Scholar
  4. Baba, T., Mori, D., Inoshita, K., Kuroki, Y.: Light localization in line defect photonic crystal waveguides. IEEE J. Quant. Electron. 10, 484–491 (2004)CrossRefGoogle Scholar
  5. Chutinan, A., Noda, S.: Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal. J. Opt. Soc. Am. B 16, 240–244 (1999)ADSCrossRefGoogle Scholar
  6. Dae-Seon, K., Yonkil, J., Hojung, J., Jae-Hyung, J.: Triple-junction InGaP/GaAs/Ge solar cells integrated with polymethyl methacrylate subwavelength structure. Appl. Surf. Science 320, 901–907 (2014)ADSCrossRefGoogle Scholar
  7. Deotare, P.B., McCutcheon, M.W., Frank, I.W., Khan, M., Loncar, M.: High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009)ADSCrossRefGoogle Scholar
  8. Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quant. Electron. 45, 907–917 (2013)CrossRefGoogle Scholar
  9. Engelen, R.J.P., Sugimoto, Y., Watanabe, Y., Korterik, J.P., Ikeda, N., van Hulst, N.F., Asakawa, K., Kuipers, L.: The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006)ADSCrossRefGoogle Scholar
  10. Fu, Y.J., Lee, Y.S., Lin, S.-D.: Design and demonstration of high quality-factor H1—cavity in two-dimensional photonic crystal. Opt. Lett. 38, 4915–4918 (2013)ADSCrossRefGoogle Scholar
  11. Gaponenko, S.V.: Introduction to Nanophotonics, pp. 200–232. Cambridge University Press, N.Y. (2010)CrossRefGoogle Scholar
  12. Gregersen, N., Reitzenstein, S., Kistner, C., Strauss, M., Schneider, C., Höfling, S., Worschech, L., Forchel, A., Nielsen, T.R., Mørk, J., Gérard, J.-M.: Numerical and experimental study of the Q factor of high-Q micropillar cavities. IEEE J. Quant. Electron. 46, 1470–1483 (2010)ADSCrossRefGoogle Scholar
  13. Hache, A., Slimani, A.: A model coaxial photonic crystal for studying band structures, dispersion, field localization, and superluminal effects. Am. J. Phys. 72, 916–921 (2004)ADSCrossRefGoogle Scholar
  14. Hou, J., Wu, H., Citrin, D.S., Mo, W., Gao, D., Zhou, Z.: Wideband slow light in chirped slot photonic-crystal coupled waveguides. Opt. Express 18, 10567–10580 (2010)ADSCrossRefGoogle Scholar
  15. Jugessur, A.S., De La Rue, R.M., Pottier, P.: One dimensional periodic photonic crystal microcavity filters with transition mode matching features embedded in ridge waveguide. Electron. Lett. 39, 367–369 (2003)CrossRefGoogle Scholar
  16. Kang, C., Weiss, S.M.: Photonic crystal with multiple-hole defect for sensor applications. Opt. Express 16, 18188–18193 (2008)ADSCrossRefGoogle Scholar
  17. Khodamohammadi, A., Khoshsima, H., Fallahi, V., Sahrai, M.: Wideband slab photonic crystal waveguides for slow light using differential optofluidic infiltration. Appl. Opt. 54, 1002–1009 (2015)ADSCrossRefGoogle Scholar
  18. Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007)ADSCrossRefGoogle Scholar
  19. Kriegel, I., Scotognella, F.: Magneto-optical switching in microcavities based on a TGG defect sandwiched between periodic and disordered one-dimensional photonic structures. Optik 142, 249–255 (2017)ADSCrossRefGoogle Scholar
  20. Kuramochi, E., Notomi, M., Mitsugi, S., Shinya, A., Tanabe, T.: Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006)ADSCrossRefGoogle Scholar
  21. Maes, B., Petracek, J., Burger, S., Kwiecien, P., Luksch, J., Richter, I.: Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt. Express 21, 6794–6806 (2013)ADSCrossRefGoogle Scholar
  22. Moon, S.-K., Yang, J.-K.: Numerical study of the photonic-bandgap effect in two-dimensional slab photonic structures with long-range order. J. Opt. 15, 075704 (2013)ADSCrossRefGoogle Scholar
  23. Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)CrossRefGoogle Scholar
  24. Safavi-Naeini, A.H., Painter, O.: Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010)ADSCrossRefGoogle Scholar
  25. Song, B.S., Noda, S., Asano, T., Akahane, Y.: Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Materials 4, 207–210 (2005)ADSCrossRefGoogle Scholar
  26. Srinivasan, K., Barclay, P.E., Painter, O.: Fabrication-tolerant high quality factor photonic crystal microcavities. Opt. Express 12, 1458–1463 (2004)ADSCrossRefGoogle Scholar
  27. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, pp. 188–225. Artech House, Norwood (2005)zbMATHGoogle Scholar
  28. Tao, S.H., Yu, M.B., Song, J.F., Fang, Q., Yang, R., Lo, G.Q., Kwong, D.L.: Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform. Appl. Phys. Lett. 92, 031113 (2008)ADSCrossRefGoogle Scholar
  29. Tucker, R.S., Ku, P.-C., Chang-Hasnain, C.J.: Slow-light optical buffers—capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005)ADSCrossRefGoogle Scholar
  30. Tzu-Pin, Ch., Ssu-I, F., Wen-Chau, L.: Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors. J. Appl. Phys. 101, 034501 (2007)ADSCrossRefGoogle Scholar
  31. Vlasov, Y.A., O’Boyle, M., Hamann, H.F., Mcab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)ADSCrossRefGoogle Scholar
  32. Wang, D., Yu, Z., Liu, Y., Zhou, S., Guo, X., Shu, C.: Slight disorder effects in two dimensional photonic crystal structures. Optik 125, 5418–5421 (2014)ADSCrossRefGoogle Scholar
  33. Xiao, X., Wenjun, W., Shuhong, L., Wanquan, Z., Dong, Z., Qianqian, D., Xuexi, G., Bingyuan, Z.: Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals. Optik 127, 135–138 (2016)ADSCrossRefGoogle Scholar
  34. Yang, D., Kita, S., Liang, F., Wang, C., Tian, H., Ji, Y., Loncar, M., Quan, Q.: High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. 105, 063108 (2014)ADSCrossRefGoogle Scholar
  35. Yeh, D.-W., Wu, C.-J.: Thickness-dependent photonic bandgap in a one-dimensional single negative photonic crystal. J. Opt. Soc. Am. B 26(8), 1506–1510 (2009)ADSCrossRefGoogle Scholar
  36. Yu, W.: Electromagnetic Simulation Techniques Based on the FDTD Method, pp. 17–25. Wiley, Hoboken (2009)Google Scholar
  37. Zhao, Q., Cui, K., Feng, X., Liu, F., Zhang, W., Huang, Y.: Low loss sharp photonic crystal waveguide bends. Opt. Commun. 355, 209–212 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Erbil Technology InstituteErbil Polytechnic UniversityErbilIraq

Personalised recommendations