Advertisement

Physical layer security in mixed Rf/FSO system under multiple eavesdroppers collusion and non-collusion

Article
  • 5 Downloads

Abstract

Secure transmission in wireless networks is a big critical issue due to the broadcast nature of the wireless propagation environment. In this paper, the physical layer security performance in a mixed radio frequency (RF)/free space optical (FSO) system under multiple eavesdroppers is investigated. The RF links and FSO link within the system are assumed to respectively undergo Nakagami-m and Gamma–Gamma fading distributions. The two practical eavesdroppers scenarios considered includes: Colluding and Non-colluding in which their channel state information is unavailable at the source. The closed-form expressions for the lower bound security outage probability and the strictly positive secrecy capacity under both scenarios are derived by utilizing the system end-to-end cumulative distribution function and eavesdroppers’ probability density function. The results show that the increase in the number of eavesdroppers under both scenarios profoundly degrades the system secrecy performance. Moreover, it is demonstrated that both the atmospheric turbulence and pointing errors affect the concerned system secrecy and the impact of RF fading parameters is also presented. The accuracy of the numerical results obtained is validated by Montel-Carol simulations.

Keywords

Free space optics Radio Frequency Physical layer security Eavesdroppers Pointing errors Atmospheric turbulence 

References

  1. Adamchik, V., Marichev, O.: The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. In: Proceedings of Proceedings of the international symposium on Symbolic and algebraic computation, pp. 212–224. (1990)Google Scholar
  2. Anees, S., Bhatnagar, M.R.: Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectron. 9(5), 232–240 (2015a)CrossRefGoogle Scholar
  3. Anees, S., Bhatnagar, M.: Performance of an amplify-and-forward dual-hop asymmetric RF–FSO communication system. IEEE/OSA J. Opt. Commun. Netw. 7(2), 124–135 (2015b)CrossRefGoogle Scholar
  4. Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetCrossRefMATHGoogle Scholar
  5. El-Malek, A.H.A., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling. IEEE Trans. Wireless Commun. 15(9), 5904–5918 (2016)CrossRefGoogle Scholar
  6. El-Malek, A.H.A., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Effect of RF interference on the security-reliability tradeoff analysis of multiuser mixed RF/FSO relay networks with power allocation. J. Lightwave Technol. 35(9), 1490–1505 (2017)ADSCrossRefGoogle Scholar
  7. Ferdinand, N.S., Rajatheva, N., Latva-aho, M.: Effects of feedback delay in partial relay selection over Nakagami-$ m $ fading channels. IEEE Trans. Veh. Technol. 61(4), 1620–1634 (2012)CrossRefGoogle Scholar
  8. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic press, London (2014)MATHGoogle Scholar
  9. Huang, Y., Al-Qahtani, F.S., Duong, T.Q., Wang, J.: Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI. IEEE Trans. Commun. 63(8), 2959–2971 (2015)CrossRefGoogle Scholar
  10. Huang, Y., Wang, J., Zhong, C., Duong, T.Q., Karagiannidis, G.K.: Secure transmission in cooperative relaying networks with multiple antennas. IEEE Trans. Wireless Commun. 15(10), 6843–6856 (2016)CrossRefGoogle Scholar
  11. Kedar, D., Arnon, S.: Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag. 42(5), S2–S7 (2004)CrossRefGoogle Scholar
  12. Kong, L., Xu, W., Hanzo, L., Zhang, H., Zhao, C.: Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized $ M $-distributed channels. IEEE Photonics J. 7(5), 1–19 (2015)CrossRefGoogle Scholar
  13. Lee, E., Park, J., Han, D., Yoon, G.: Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links. IEEE Photonics Technol. Lett. 23(21), 1642–1644 (2011)ADSCrossRefGoogle Scholar
  14. Lei, H., Gao, C., Ansari, I.S., Guo, Y., Pan, G., Qaraqe, K.A.: On physical-layer security over SIMO generalized-$ K $ fading channels. IEEE Trans. Veh. Technol. 65(9), 7780–7785 (2016a)CrossRefGoogle Scholar
  15. Lei, H., Zhang, H., Ansari, I.S., Gao, C., Guo, Y., Pan, G., et al.: Performance analysis of physical layer security over generalized-$ K $ fading channels using a mixture Gamma distribution. IEEE Commun. Lett. 20(2), 408–411 (2016b)CrossRefGoogle Scholar
  16. Lei, H., Dai, Z., Ansari, I.S., Park, K.-H., Pan, G., Alouini, M.-S.: On secrecy performance of mixed RF-FSO systems. IEEE Photonics J. 9(4), 1–14 (2017)CrossRefGoogle Scholar
  17. Lei, H., Luo, H., Park, K.-H., Ren, Z., Pan, G., Alouini, M.-S.: Secrecy outage analysis of mixed RF-FSO systems with channel imperfection. IEEE Photonics J. 10(3), 1–13 (2018)CrossRefGoogle Scholar
  18. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978)MathSciNetCrossRefMATHGoogle Scholar
  19. Lopez-Martinez, F.J., Gomez, G., Garrido-Balsells, J.M.: Physical-layer security in free-space optical communications. IEEE Photonics J. 7(2), 1–14 (2015)CrossRefGoogle Scholar
  20. Meraji, S.: Performance analysis of transmit antenna selection in Nakagami-m fading channels. Wireless Pers. Commun. 43(2), 327–333 (2007)CrossRefGoogle Scholar
  21. Odeyemi, K.O., Owolawi, P.A., Srivastava, V.M.: Performance analysis of decode-and-forward dual-hop optical spatial modulation with diversity combiner over atmospheric turbulence. Opt. Commun. 402, 242–251 (2017a)ADSCrossRefGoogle Scholar
  22. Odeyemi, K.O., Owolawi, P.A., Srivastava, V.M.: Optical spatial modulation over Gamma-Gamma turbulence and pointing error induced fading channels. Optik-Int. J. Light Electron Opt. 147, 214–223 (2017b)CrossRefGoogle Scholar
  23. Salhab, A.M.: A new scenario of triple-hop mixed RF/FSO/RF relay network with generalized order user scheduling and power allocation. EURASIP J. Wireless Commun. Netw. 1, 260–727 (2016)CrossRefGoogle Scholar
  24. Soleimani-Nasab, E., Uysal, M.: Generalized performance analysis of mixed RF/FSO cooperative systems. IEEE Trans. Wireless Commun. 15(1), 714–727 (2016)CrossRefGoogle Scholar
  25. Sun, X., Djordjevic, I.B.: Physical-layer security in orbital angular momentum multiplexing free-space optical communications. IEEE Photonics J. 8(1), 1–10 (2016)Google Scholar
  26. Wang, L., Elkashlan, M., Huang, J., Schober, R., Mallik, R.K.: Secrecy outage of TAS/GSC in Nakagami-m fading channels. In: Proceedings of Communications (ICC), 2014 IEEE International Conference on, pp. 2087–2092. (2014)Google Scholar
  27. Wang, D., Ren, P., Cheng, J., Du, Q., Wang, Y., Sun, L.: Secure transmission for mixed FSO-RF relay networks with physical-layer key encryption and wiretap coding. Opt. Express 25(9), 10078–10089 (2017)CrossRefGoogle Scholar
  28. Wyner, A.D.: The wire-tap channel. Bell Labs Technical Journal 54(8), 1355–1387 (1975)MathSciNetCrossRefMATHGoogle Scholar
  29. Yang, M., Guo, D., Huang, Y., Duong, T.Q., Zhang, B.: Secure multiuser scheduling in downlink dual-hop regenerative relay networks over Nakagami-$ m $ fading channels. IEEE Trans. Wireless Commun. 15(12), 8009–8024 (2016)CrossRefGoogle Scholar
  30. Zedini, E., Ansari, I.S., Alouini, M.-S.: Performance analysis of mixed Nakagami-$ m $ and Gamma-Gamma dual-hop FSO transmission systems. IEEE Photonics J. 7(1), 1–20 (2015)CrossRefGoogle Scholar
  31. Zhang, Y., Shen, Y., Wang, H., Yong, J., Jiang, X.: On secure wireless communications for IoT under eavesdropper collusion. IEEE Trans. Autom. Sci. Eng. 13(3), 1281–1293 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Engineering, Howard CollegeUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Computer Systems EngineeringTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations