Advertisement

Some types of dark soliton interactions in inhomogeneous optical fibers

  • Yujia Zhang
  • Chunyu Yang
  • Weitian Yu
  • Mengli Liu
  • Guoli Ma
  • Wenjun Liu
Article
  • 79 Downloads

Abstract

Dark solitons are the subject of intense theoretical and experimental studies in nonlinear optics due to their unique characteristics compared with bright solitons. In this paper, the variable coefficient high-order nonlinear Schrödinger equation in the inhomogeneous optical fiber is investigated. Via the Hirota bilinear method and symbolic computation, the analytic dark two-soliton solutions are obtained. With the suitable choices of functions and coefficients for the obtained dark two-soliton solutions, some new phenomena are presented for the first time. The influences on phases and amplitudes of soliton interactions are detailed analyzed. Moreover, sets of double-triangle structures and methods of changing the propagation direction of dark solitons are introduced. Finally, by choosing suitable functions of the fourth-order dispersion parameter, the arch-structure and M-structure interactions are revealed. Results may be potentially useful in designing all-optical switches and optical fibers.

Keywords

Dark solitons Soliton interactions Variable-coefficient higher-order nonlinear Schrödinger equation Inhomogeneous optical fibers 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11674036), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08), and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05).

References

  1. Abdullaev, F.K., Garnier, J.: Dynamical stabilization of solitons in cubic–quintic nonlinear Schrödinger model. Phys. Rev. E 72, 035603R (2005)ADSMathSciNetCrossRefGoogle Scholar
  2. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2007)zbMATHGoogle Scholar
  3. Ankiewicz, A., Akhmediev, N.: Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89, 012907 (2014)ADSCrossRefGoogle Scholar
  5. Chen, C.J., Wai, P.K.A., Menyuk, C.R.: Soliton switch using birefringent optical fibers. Opt. Lett. 15, 477–479 (1990)ADSCrossRefGoogle Scholar
  6. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)MathSciNetCrossRefGoogle Scholar
  7. Emmanuel, Y., Gholam-Ali, Z.: N-soliton interactions in an extended Schrödinger equation with higher order of nonlinearities. Phys. B 483, 26–36 (2016)CrossRefGoogle Scholar
  8. Hasegawa, A., Matsumoto, M.: Optical Solitons in Fibers. Springer, Berlin (2003)CrossRefGoogle Scholar
  9. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)ADSCrossRefGoogle Scholar
  10. Hirota, R.: The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004)Google Scholar
  11. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)Google Scholar
  12. Kivshar, Y.S., Haelterman, M., Emplit, P., Hamaide, J.P.: Gordon–Haus effect on dark solitons. Opt. Lett. 19, 19–21 (1994)ADSCrossRefGoogle Scholar
  13. Lamb Jr., G.L.: Elements of Soliton Theory. Wiley, New York (1980)zbMATHGoogle Scholar
  14. Li, W.Y., Ma, G.L., Yu, W.T., Zhang, Y.J., Liu, M.L., Yang, C.Y., Liu, W.J.: Soliton structures in the (\(1+1\))-dimensional Ginzburg–Landau equation with a parity-time-symmetric potential in ultrafast optics. Chin. Phys. B 27, 030504 (2018)ADSCrossRefGoogle Scholar
  15. Liu, W.J., Pang, L.H., Han, H.N., Tian, W.L., Chen, H., Lei, M., Yan, P.G., Wei, Z.Y.: Generation of dark solitons in erbium-doped fiber lasers based \({\rm Sb}_2{\rm Te}_3\) saturable absorbers. Opt. Express 23, 26023–26031 (2015)ADSCrossRefGoogle Scholar
  16. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96, 042201 (2017a)ADSCrossRefGoogle Scholar
  17. Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017b)MathSciNetCrossRefGoogle Scholar
  18. Liu, W.J., Pang, L.H., Han, H.N., Bi, K., Lei, M., Wei, Z.Y.: Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 9, 5806–5811 (2017c)CrossRefGoogle Scholar
  19. Liu, W.J., Liu, M.L., Lei, M., Fang, S.B., Wei, Z.Y.: Titanium selenide saturable absorber mirror for passive Q-switched er-doped fiber laser. IEEE J. Quantum. Elect. 24, 0901005 (2017d)Google Scholar
  20. Liu, W.J., Liu, M.L., Yin, J.D., Chen, H., Lu, W., Fang, S.B., Teng, H., Lei, M., Yan, P.G., Wei, Z.Y.: Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 10, 7971–7977 (2018a)CrossRefGoogle Scholar
  21. Liu, W.J., Zhu, Y.N., Liu, M.L., Wen, B., Fang, S.B., Teng, H., Lei, M., Liu, L.M., Wei, Z.Y.: Optical properties and applications for \(\text{MoS}_{2}{-}\text{Sb}_{2}\text{Te}_{3}{-}\text{MoS}_{2}\) heterostructure materials. Photon. Res. 6, 220–227 (2018b)CrossRefGoogle Scholar
  22. Liu, W.J., Liu, M.L., OuYang, Y.Y., Hou, H.R., Ma, G.L., Lei, M., Wei, Z.Y.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 29, 174002 (2018c)ADSCrossRefGoogle Scholar
  23. Liu, M.L., Liu, W.J., Pang, L.H., Teng, H., Fang, S.B., Wei, Z.Y.: Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber. Opt. Commun. 406, 72–75 (2018d)ADSCrossRefGoogle Scholar
  24. Locati, F.S., Romagnoli, M., Tajani, A., Wabnitz, S.: Adiabatic femtosecond soliton active nonlinear directional coupler. Opt. Lett. 17, 1394–1396 (1992)ADSCrossRefGoogle Scholar
  25. Malomed, B.A., Mostofi, A., Chu, P.L.: Transformation of a dark soliton into a bright pulse. J. Opt. Soc. Am. B 17, 507–513 (2000)ADSCrossRefGoogle Scholar
  26. Mollenauer, L.F., Smith, K.: Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Opt. Lett. 13, 675–677 (1988)ADSCrossRefGoogle Scholar
  27. Mollenauer, L.F., Neubelt, M.J., Evangelides, S.G., Gordon, J.P., Simpson, J.R., Cohen, L.G.: Experimental study of soliton transmission over more than 10,000 km in dispersion-shifted fiber. Opt. Lett. 15, 1203–1205 (1990)ADSCrossRefGoogle Scholar
  28. Sun, Y., Tian, B., Wu, X.Y., Liu, L., Yuan, Y.Q.: Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber. Mod. Phys. Lett. B 31, 1750065 (2017)ADSCrossRefGoogle Scholar
  29. Wang, Y.F., Tian, B., Sun, W.R.: Analytic study on an extended higher-order nonlinear Schrödinger equation for heisenberg ferromagnet. Chin. J. Phys. 53, 1–11 (2015)ADSGoogle Scholar
  30. Weiner, A.M., Heritage, J.P., Hawkins, R.J., Thurston, R.N., Kirschner, E.M., Leaird, D.E., Tomlinson, W.J.: Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61, 2445–2448 (1988)ADSCrossRefGoogle Scholar
  31. Wilson, J., Stegeman, G.I., Wright, E.M.: Soliton switching in an erbium-doped nonlinear fiber coupler. Opt. Lett. 16, 1653–1655 (1991)ADSCrossRefGoogle Scholar
  32. Yang, C.Y., Li, W.Y., Yu, W.T., Liu, M.L., Zhang, Y.J., Ma, G.L., Lei, M., Liu, W.J.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92, 203–213 (2018)CrossRefGoogle Scholar
  33. Zhang, H., Tang, D.Y., Zhao, L.M., Knize, R.J.: Vector dark domain wall solitons in a fiber ring laser. Opt. Express 18, 4428–4433 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations