Effects of strain, magnetic field and temperature on entropy of a two dimensional GaAs quantum dot under spin–orbit interaction

  • R. KhordadEmail author
  • H. Bahramiyan
  • H. R. Rastegar Sedehi


In this paper, we have studied the effects of temperature, strain and magnetic field on non-extensive entropy of a two-dimensional (2D) quantum dot under spin–orbit interaction. To this end, we have obtained the energy levels and wave functions of the system in the presence of Bychkov–Rashba, Dresselhaus and strain effects by using diagonalization procedure. Then, we have used the Tsallis formalism and calculated the entropy of the system. It is found that the entropy is increased with enhancing the temperature with and without strain. The entropy increases with considering the negative strain. The strain has not strongly effect on the entropy at low temperatures.


Entropy Spin–orbit interaction Quantum dot Strain effect 


  1. Bera, A., Saha, S., Ganguly, J., Ghosh, M.: Noise-driven diamagnetic susceptibility of impurity doped quantum dots: role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function. Chem. Phys. 474, 36–43 (2016)CrossRefGoogle Scholar
  2. Bhatt, A.R., Kim, K.W., Stroscio, M.A., Higman, J.M.: Simplified microscopic model for electron–optical-phonon interactions in quantum wells. Phys. Rev. B 48, 14671–14677 (1993)ADSCrossRefGoogle Scholar
  3. Bir, G.I., Pikus, G.E.: Cyclotron and paramagnetic resonance in strained crystals. Phys. Rev. Lett. 6, 103–106 (1961)ADSCrossRefGoogle Scholar
  4. Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6046 (1984)ADSCrossRefGoogle Scholar
  5. Darwin, C.G.: The diamagnetism of the free electron. Proc. Camb. Philos. Soc. 27, 86–90 (1931)ADSCrossRefzbMATHGoogle Scholar
  6. Datta, N.K., Ghosh, M.: Oscillatory impurity potential induced dynamics of doped quantum dots: analysis based on coupled influence of impurity coordinate and impurity influenced domain. Chem. Phys. 372, 82–88 (2010a)CrossRefGoogle Scholar
  7. Datta, N.K., Ghosh, M.: Repulsive impurity doped quantum dot subjected to oscillatory confinement potential: role of dopant strength and dopant location on time-evolution. Solid State Sci. 12, 1620–1628 (2010b)ADSCrossRefGoogle Scholar
  8. Dresselhaus, G.: Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)ADSCrossRefzbMATHGoogle Scholar
  9. Dyakonov, M.I., Kachorovskii, V.Y.: Streamer discharge in a homogeneous field. Zh. Eksp. Teor. Fiz. 95, 1850–1859 (1989)Google Scholar
  10. Florescu, M., Dickman, S., Ciorga, M., Sachrajda, A., Hawrylak, P.: Spin–orbit interaction and spin relaxation in a lateral quantum dot. Physica E 22, 414–417 (2004)ADSCrossRefGoogle Scholar
  11. Fock, V.Z.: Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Physik 47, 446–448 (1928)CrossRefzbMATHGoogle Scholar
  12. Khordad, R.: Study of specific heat of quantum pseudodot under magnetic field. Int. J. Thermophys. 34, 1148–1157 (2013)ADSCrossRefGoogle Scholar
  13. Khordad, R.: Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy. Contin. Mech. Thermodyn. 28, 947–956 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Khordad, R.: The effect of Rashba spin–orbit interaction on electronic and optical properties of a double ring-shaped quantum dot. Superlattices Microstruct. 110, 146–154 (2017)ADSCrossRefGoogle Scholar
  15. Khordad, R.: Simultaneous effects of electron–electron interactions, Rashba spin–orbit interaction and magnetic field on susceptibility of quantum dots. J. Mag. Mag. Mater. 449, 510–514 (2018)ADSCrossRefGoogle Scholar
  16. Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)ADSCrossRefGoogle Scholar
  17. Khordad, R., Rastegar Sedehi, H.R.: Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy. Superlattices Microstrcut. 101, 559–566 (2017a)ADSCrossRefGoogle Scholar
  18. Khordad, R., Rastegar Sedehi, H.R.: Application of different entropies to study of bound magnetopolaron in an asymmetric quantum dot. Indian J. Phys. 91, 825–831 (2017b)ADSCrossRefGoogle Scholar
  19. Khordad, R., Rastegar Sedehi, H.R.: Study of non-extensive entropy of bound polaron in monolayer graphene. Indian J. Phys. 92, 979–984 (2018a)ADSCrossRefGoogle Scholar
  20. Khordad, R., Rastegar Sedehi, H.R.: Thermodynamic properties of a double ring-shaped quantum dot at low and high temperatures. J. Low Temp. Phys. 190, 200–212 (2018b)ADSCrossRefGoogle Scholar
  21. Khordad, R., Rastegar Sedehi, H.R.: Low temperature behavior of thermodynamic properties of 1D quantum wire under the Rashba spin–orbit interaction and magnetic field. Solid State Commun. 269, 118–124 (2018c)ADSCrossRefGoogle Scholar
  22. Khordad, R., Sadeghzadeh, M.A., Mohamadian Jahan-Abad, A.: Specific heat of a parabolic cylindrical quantum dot in the presence of magnetic field. Superlattices Microstrcut. 58, 11–19 (2013)ADSCrossRefGoogle Scholar
  23. Khordad, R., Bornaei, R., Mardani-Fard, H.A.: Application of Tsallis formalism to study entropy and specific heat of V-groove quantum wires. Indian J. Phys. 89, 545–550 (2015)ADSCrossRefGoogle Scholar
  24. Khordad, R., Rastegar Sedehi, H.R., Bahramiyan, H.: Simultaneous effects of impurity and electric field on entropy behavior in double cone-like quantum dot. Commun. Theor. Phys. 69, 95–100 (2018)ADSCrossRefGoogle Scholar
  25. Kikuchi, Y., Sugai, H., Shintani, K.: Strain profiles in pyramidal quantum dots by means of atomistic simulation. J. Appl. Phys. 89, 1191–1196 (2001)ADSCrossRefGoogle Scholar
  26. Knap, W., Skierbiszewski, C., Zduniak, A., Litwin-Staszewska, E., Bertho, D., Kobbi, F., Robert, J.L., Pikus, G.E., Pikus, F.G., Iordanskii, S.V., Mosser, V., Zekentes, K., Lyanda-Geller, Y.B.: Weak antilocalization and spin precession in quantum wells. Phys. Rev. B 53, 3912–3918 (1996)ADSCrossRefGoogle Scholar
  27. Krstajic, P.M., Pagano, M., Vasilopoulos, P.: Transport properties of low-dimensional semiconductor structures in the presence of spin–orbit interaction. Physica E 43, 893–900 (2011)ADSCrossRefGoogle Scholar
  28. Mikhail, I.F.I., Ismail, I.M.M., El Shafee, M.M.: Spin–orbit interaction in a multilayered spherical quantum dot. Indian J. Phys. 90, 1115–1126 (2016)ADSCrossRefGoogle Scholar
  29. Miller, J.B., Zumbuhl, D.M., Marcus, C.M., Lyanda-Geller, Y.B., Goldhaber-Gordon, D., Campman, K., Gossard, A.C.: Gate-controlled spin–orbit quantum interference effects in lateral transport. Phys. Rev. Lett. 90, 76807–76812 (2003)ADSCrossRefGoogle Scholar
  30. Mughnetsyan, V., Manaselyan, A., Kirakosyan, A.: Effect of Rashba spin–orbit coupling and external magnetic field on electronic minibands in highly strained one-layer quantum ring superlattice. Superlattices Microstruct. 104, 10–18 (2017)ADSCrossRefGoogle Scholar
  31. Papp, E., Micu, C.: Revisiting Rashba and Dresselhaus spin–orbit interactions in electric and magnetic fields: exact energy results and approximations. Superlattices Microstruct. 48, 9–22 (2010)ADSCrossRefGoogle Scholar
  32. Peng, X.H., Ganti, S., Alizadeh, A., Sharma, P., Kumar, S.K., Nayak, S.K.: Strain-engineered photoluminescence of silicon nanoclusters. Phys. Rev. B 74, 035339–035344 (2006)ADSCrossRefGoogle Scholar
  33. Peng, X.H., Alizadeh, A., Bhate, N., Varanasi, K.K., Kumar, S.K., Nayak, S.K.: First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J. Phys. Condens. Matter 19, 26612–26618 (2007)CrossRefGoogle Scholar
  34. Raiteri, P., Valentinotti, F., Miglio, L.: Stress, strain and elastic energy at nanometric Ge dots on Si(0 0 1). Appl. Surf. Sci. 188, 4–8 (2002)ADSCrossRefGoogle Scholar
  35. Rashba, E.I.: Properties of semiconductors with a loop of extrema, I. Cyclotron and combined resonances in a perpendicular field. Fiz. Tverd. Tela (Leningrad) 2, 1224–1238 (1960)Google Scholar
  36. Ridley, B.K.: Electron scattering by confined LO polar phonons in a quantum well. Phys. Rev. B 39, 5282–5289 (1989)ADSCrossRefGoogle Scholar
  37. Rodriguez, M.V.: Renormalization of spin-orbit coupling in quantum dots due to the Zeeman interaction. Phys. Rev. B (2004). Google Scholar
  38. Rüker, H., Molinari, E., Lugli, P.: Electron–phonon interaction in quasi-two-dimensional systems. Phys. Rev. B 44, 3463–3468 (1991)ADSCrossRefGoogle Scholar
  39. Saha, S., Ganguly, J., Bera, A., Ghosh, M.: Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise. Chem. Phys. 480, 17–22 (2016)CrossRefGoogle Scholar
  40. Saïdi, I., Sellami, K., Yahyaoui, M., Testelin, B., Boujdaria, K.: Electron and hole energy levels in InAs/GaAs quantum dots: size and magnetic field effects. J. Appl. Phys. 109, 033703–033710 (2011)ADSCrossRefGoogle Scholar
  41. Sousa, R.D., Das Sarma, S.: Gate control of spin dynamics in III–V semiconductor quantum dots. Phys. Rev B 68, 155330–155337 (2003)ADSCrossRefGoogle Scholar
  42. Sukirti, G., Manoj, K., Kumar, J.P., Man, M.: Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field. Chin. Phys. B 25, 056502–056510 (2016)ADSCrossRefGoogle Scholar
  43. Tiotsop, M., et al.: The effect of temperature on the lifetime and Shannon entropy of a magnetopolaron in a RbCl triangular quantum dot. Chin. J. Phys. 54, 795–801 (2016)CrossRefGoogle Scholar
  44. Tiotsop, M., Fotue, A.J., Fostin, H.B., Fai, L.C.: Non-extensive entropy and properties of polaron in RbCl delta quantum dot under an applied electric field and Coulombic impurity. Phys. B 518, 61–67 (2017)ADSCrossRefGoogle Scholar
  45. Tsallis, C.J.: Possible generalization of Boltzmann–Gibbs statistics. Stat. Phys. 52, 479–487 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. Xiao, Y.C., Deng, W.J.: Rashba–Dresselhaus double refraction in a two-dimensional electron gas. Superlattices Microstruct. 48, 181–189 (2010)ADSCrossRefGoogle Scholar
  47. Yu, W., Madhukar, A.: Molecular dynamics study of coherent island energetics, stresses, and strains in highly strained epitaxy. Appl. Phys. Lett. 79, 905–910 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Khordad
    • 1
    Email author
  • H. Bahramiyan
    • 2
  • H. R. Rastegar Sedehi
    • 3
  1. 1.Department of Physics, College of SciencesYasouj UniversityYasoujIran
  2. 2.Department of Optics and Laser Engineering, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
  3. 3.Department of PhysicsJahrom UniversityJahromIran

Personalised recommendations