Signature of the ideality factor in III-nitride multi quantum well light emitting diodes

  • Friedhard RömerEmail author
  • Bernd Witzigmann
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices


The ideality factor in recent III-nitride light emitting diodes (LED) is expected to approach values close to \(\eta \approx 1\) near the maximum of the internal quantum efficiency (IQE) because the bimolecular recombination dominates there. However, the electrical characterisation of multi quantum well (MQW) LEDs often yields values which are more close to \(\eta \approx 2\) or even more. To analyse the effect of the MQW on the ideality factor we derive an electrical model based on lumped circuit elements. By comparing the model results with the physical simulations of the ideality factor we demonstrate its validity. The detailed analysis of the circuit elements reveals that the electron scattering has a major impact on the ideality factor near the maximum of the IQE. We show that the ideality factor presents a signature for the hole injection efficiency and thus can be used to estimate the IQE characteristic in the high current regime.


Light emitting diode III-Nitride Multi quantum well Ideality factor Carrier transport simulation 


  1. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F.: Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter 14(13), 3399–3434 (2002). ADSCrossRefGoogle Scholar
  2. Auf der Maur, M., Galler, B., Pietzonka, I., Strassburg, M., Lugauer, H., Di Carlo, A.: Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 105(13), 133504 (2014). ADSCrossRefGoogle Scholar
  3. Baraff, G.: Semiclassical description of electron transport in semiconductor quantum-well devices. Phys. Rev. B 55(16), 10745–10753 (1997)ADSCrossRefGoogle Scholar
  4. Binder, M., Galler, B., Furitsch, M., Off, J., Wagner, J., Zeisel, R., Katz, S.: Investigations on correlation between IV characteristic and internal quantum efficiency of blue (AlGaIn)N light-emitting diodes. Appl. Phys. Lett. 103(22), 221110 (2013). ADSCrossRefGoogle Scholar
  5. Brochen, S., Brault, J., Chenot, S., Dussaigne, A., Leroux, M., Damilano, B.: Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 103(3), 032102 (2013). ADSCrossRefGoogle Scholar
  6. Cho, J., Schubert, E.F., Kim, J.K.: Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser. Photon. Rev. 7(3), 408–421 (2013). ADSCrossRefGoogle Scholar
  7. David A., Hurni C.A., Young N.G., Craven M.D.: Electrical properties of III-nitride LEDs: recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl. Phys. Lett. 109(8), 083501 (2016). ADSCrossRefGoogle Scholar
  8. Ferry, D., Ramey, S., Shifren, L., Akis, R.: The effective potential in device modeling: the good, the bad and the ugly. J. Comput. Electron. 1(1/2), 59–65 (2002). CrossRefGoogle Scholar
  9. Galler, B., Laubsch, A., Wojcik, A., Lugauer, H., Gomez-Iglesias, A., Sabathil, M., Hahn, B.: Investigation of the carrier distribution in InGaN-based multi-quantum-well structures. Phys. Status Solidi C 8(7–8), 2372–2374 (2011). ADSCrossRefGoogle Scholar
  10. Grupen, M., Hess, K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quantum Electron. 34(1), 120–140 (1998). ADSCrossRefGoogle Scholar
  11. Han, D.P., Shim, J.-I., Shin, D.S., Kim, K.S.: Effects of unbalanced carrier injection on the performance characteristics of InGaN light-emitting diodes. Appl. Phys. Express 9(8), 081002 (2016). ADSCrossRefGoogle Scholar
  12. Kioupakis, E., Yan, Q., Van de Walle, C.G.: Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 101(23), 231107 (2012). ADSCrossRefGoogle Scholar
  13. Masui, H.: Diode ideality factor in modern light-emitting diodes. Semicond. Sci. Technol. 26(7), 075011 (2011). ADSCrossRefGoogle Scholar
  14. Okada, N., Tadatomo, K., Yamane, K., Mangyo, H., Kobayashi, Y., Ono, H., Ikenaga, K., Yano, Y., Matsumoto, K.: Performance of InGaN/GaN light-emitting diodes grown using NH3 with oxygen-containing impurities with oxygen-containing impurities. Jpn. J. Appl. Phys. 53(8), 081001 (2014). ADSCrossRefGoogle Scholar
  15. Park, S.H., Chuang, S.L.: Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999). ADSCrossRefGoogle Scholar
  16. Piprek, J., Li, Z.M.S.: Sensitivity analysis of electron leakage in III-nitride light-emitting diodes. Appl. Phys. Lett. 102(13), 131103 (2013). ADSCrossRefGoogle Scholar
  17. Römer, F., Witzigmann, B.: Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs. Opt. Express 22(S6), A1440–A1452 (2014). ADSCrossRefGoogle Scholar
  18. Römer, F., Witzigmann, B.: Effect of oxygen impurities in semipolar III-nitride light emitting diodes. Phys. Status Solidi A 214(1), 1600297 (2017a). ADSCrossRefGoogle Scholar
  19. Römer, F., Witzigmann, B.: Luminescence distribution in the multi-quantum well region of III-nitride light emitting diodes. In: Proceedings of SPIE, vol. 10124, p. 101240Y (2017b).
  20. Sabathil, M., Laubsch, A., Linder, N.: Self-consistent modeling of resonant PL in InGaN SQW LED-structure. In: Proceedings of SPIE, vol. 6486, p. 64860V (2007).
  21. Shedbalkar, A., Andreev, Z., Witzigmann, B.: Simulation of an indium gallium nitride quantum well light-emitting diode with the non-equilibrium Green’s function method. Phys. Status Solidi B 253(1), 158–163 (2016). ADSCrossRefGoogle Scholar
  22. Sun, W., Tan, C.K., Tansu, N.: III-Nitride digital alloy: electronics and optoelectronics properties of the InN/GaN ultra-short period superlattice nanostructures. Sci. Rep. 7(1), 6671 (2017). ADSCrossRefGoogle Scholar
  23. Xu, J., Schubert, M.F., Noemaun, A.N., Kim, J.K., Schubert, E.F., Kim, M.H., Chung, H.J., Yoon, S., Sone, C., Park, Y.: Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 94(1), 011113 (2009). ADSCrossRefGoogle Scholar
  24. Zakheim, D.A., Pavluchenko, A.S., Bauman, D.A., Bulashevich, K.A., Khokhlev, O.V., Karpov, S.Y.: Efficiency droop suppression in InGaN-based blue LEDs: experiment and numerical modelling. Phys. Status Solidi A 209(3), 456–460 (2012). ADSCrossRefGoogle Scholar
  25. Zhu, D., Xu, J., Noemaun, A.N., Kim, J.K., Schubert, E.F., Crawford, M.H., Koleske, D.D.: The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94(8), 081113 (2009). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of KasselKasselGermany

Personalised recommendations