Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications

  • M. Arshad
  • Aly R. SeadawyEmail author
  • Dianchen LuEmail author


The propagation of the optical solitons is usually governed by the higher order nonlinear Schrödinger equations (NLSE). In optics, the NLSE modelizes light-wave propagation in an optical fiber. In this article, modified extended direct algebraic method with add of symbolic computation is employed to construct bright soliton, dark soliton, periodic solitary wave and elliptic function solutions of two higher order NLSEs such as the resonant NLSE and NLSE with the dual-power law nonlinearity. Realizing the properties of static and dynamic for these kinds of solutions are very important in various many aspects and have important applications. The obtaining results confirm that the current method is powerful and effectiveness which can be employed to other complex problems that arising in mathematical physics.


The resonant NLSE The NLSE with the dual-power law nonlinearity Modified extended direct algebraic method Solitons solitary wave solutions Elliptic function solutions Periodic solutions 


  1. Ablowitz, M.J., Ladik, J.F.: On the solution of a class of nonlinear partial differential equations. Stud. Appl. Math. 57, 1–12 (1977)CrossRefGoogle Scholar
  2. Ablowitz, M., Sehur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)CrossRefGoogle Scholar
  3. Adem, A.R.: The generalized (1 + 1)-dimensional and (2 + 1)-dimensional Ito equations: multiple exp-function algorithm and multiple wave solutions. Comput. Math. Appl. 71, 1248–1258 (2016)MathSciNetCrossRefGoogle Scholar
  4. Al-Amr, M.O.: Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 69, 390–397 (2015)MathSciNetCrossRefGoogle Scholar
  5. Ali, A., Seadawy, A., Lu, D.: Soliton solutions of the nonlinear Schrodinger equation with the dual power law nonlinearity and resonant nonlinear Schrodinger equation and their modulation instability analysis. Optik Int. J. Light Electron Opt. 145, 79–88 (2017)CrossRefGoogle Scholar
  6. Arnous, A.H., Zaka, M., Ullah, M.S.P., Zhou, Q., Triki, H., Mirzazadeh, M., Biswas, A.: Optical solitons in nonlinear directional couplers with trial function scheme. Nonlinear Dyn. 88, 1891–1915 (2015)CrossRefGoogle Scholar
  7. Arshad, M., Seadawy, A.R., Lu, D.: Exact brighdark solitary wave solutions of the higher-order cubicquintic nonlinear Schrdinger equation and its stability. Optik 138, 40–49 (2017a)ADSCrossRefGoogle Scholar
  8. Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Travelling wave solutions of Drinfel–Sokolov–Wilson, Whitham–Broer–Kaup and (2+1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 55, 780–797 (2017b)CrossRefGoogle Scholar
  9. Aslan, I.: Analytic solutions to nonlinear differential-difference equations by means of the extended (G′/G)-expansion method. J. Phys. A Math. Theor. 43, 395207 (2010)MathSciNetCrossRefGoogle Scholar
  10. Aslan, I.: Exact and explicit solutions to the discrete nonlinear Schrödinger equation with a saturable nonlinearity. Phys. Lett. A 375, 4214–4217 (2011a)ADSCrossRefGoogle Scholar
  11. Aslan, I.: Some exact and explicit solutions to a two-component, discrete, nonlinear Schrödinger model. Can. J. Phys. 89, 857–862 (2011b)ADSCrossRefGoogle Scholar
  12. Aslan, I.: Travelling wave solutions to nonlinear physical models by means of the first integral method. Pramana J. Phys. 76, 533–542 (2011c)ADSCrossRefGoogle Scholar
  13. Aslan, I.: Some exact and explicit solutions for nonlinear Schrödinger equations. Acta Phys. Pol. A 123, 16–20 (2013)CrossRefGoogle Scholar
  14. Bian, C., Pang, J., Jin, L., Ying, X.: Solving two fifth order strong nonlinear evolution equations by using The ($G^{\prime }/G$)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 15, 2337–2343 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. Biswas, A.: 1-Soliton solution of (2+1)-dimensional nonlinear Schrodinger equation in dual-power law media. Phys. Lett. A 372, 5941–5943 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. Biswas, A.: 1-Soliton solution of Benjamin–Bona–Mahony equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. 15, 2744–2746 (2010)CrossRefGoogle Scholar
  17. Bona, J.L., Saut, J.C.: Dispersive blow-up II. Schrodingertype equations, optical and oceanic rogue waves. Chin. Ann. Math. Ser. B 31, 793–818 (2010)MathSciNetCrossRefGoogle Scholar
  18. Bona, J.L., Ponce, G., Saut, J.-C., Sparber, C.: Dispersive blow-up for nonlinear Schrodinger equations revisited. J. Math. Pures Appl. 102, 782–811 (2014)MathSciNetCrossRefGoogle Scholar
  19. Chabchoub, A., Homann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)ADSCrossRefGoogle Scholar
  20. Dianchen, L., Aly, S., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrdinger equations. Optik 140, 136–144 (2017)ADSCrossRefGoogle Scholar
  21. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNetCrossRefGoogle Scholar
  22. Hao, H.-Q., Guo, R., Zhang, J.-W.: Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrodinger equation. Nonlinear Dyn. 88, 1615–1622 (2017)MathSciNetCrossRefGoogle Scholar
  23. Hassan, M.M., Abdel-Razek, M.A., Shoreh, A.A.-H.: New Exact solutions of some (2+1)-dimensional nonlinear evolution equations via extended Kudryashov method. Rep. Math. Phys. 74, 347–358 (2014)ADSMathSciNetCrossRefGoogle Scholar
  24. He, J.H., Zhang, L.N.: Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the exp-function method. Phys. Lett. A 372, 1044–1047 (2008)ADSMathSciNetCrossRefGoogle Scholar
  25. Helal, M.A., Seadawy, A.R.: Exact soliton solutions of a D-dimensional nonlinear Schrödinger equation with damping and diffusive terms. Z. Angew. Math. Phys. 62, 839–847 (2011)MathSciNetCrossRefGoogle Scholar
  26. Liu, W., Yang, C., Liu, M., Weitian, Y., Zhang, Y., Lei, M., Wei, Z.: Bidirectional all-optical switches based on highly nonlinear optical fibers. EPL 118, 34004 (2017)ADSCrossRefGoogle Scholar
  27. Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, A.G.: Exact solution for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)MathSciNetzbMATHGoogle Scholar
  28. Nickel, J.: Elliptic solutions to a generalized BBM equation. Phys. Lett. A 364, 221–226 (2007)ADSMathSciNetCrossRefGoogle Scholar
  29. Nickel, J., Serov, V.S., Schurmann, H.W.: Some elliptic travelling wave solution to the Novikkov–Veselov equation. Proc. Prog. Electromagn. Res. Symp. 61, 323–331 (2006)CrossRefGoogle Scholar
  30. Russell, J.S.: Report on waves. Fourteenth meeting of the British Association for the Advancement of Science (1844)Google Scholar
  31. Schurmann, H.W., Serov, V.S., Nickel, J.: Superposition in nonlinear wave and evolution equations. Int. J. Theor. Phys. 45, 1057–1073 (2006)MathSciNetCrossRefGoogle Scholar
  32. Seadawy, A.R.: New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 62, 3741–3755 (2011)MathSciNetCrossRefGoogle Scholar
  33. Seadawy, A.R.: Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 21, 052107 (2014)ADSCrossRefGoogle Scholar
  34. Seadawy, A.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions. Optik Int. J. Light Electron Opt. 139, 31–43 (2017a)CrossRefGoogle Scholar
  35. Seadawy, A.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017b)MathSciNetCrossRefGoogle Scholar
  36. Seadawy, A.R., El-Rashidy, K.: Travelling wave solutions for some coupled nonlinear evolution equations by using the direct algebraic method. Math. Comput. Model. 57, 1371–1379 (2013)CrossRefGoogle Scholar
  37. Seadawy, A., Dianchen, L.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–48 (2017a)ADSCrossRefGoogle Scholar
  38. Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Res. Phys. 7, 43–48 (2017b)Google Scholar
  39. Seadawy, A.R., Arshad, M., Dianchen, L.: Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov–Kuznetsov systems. Eur. Phys. J. Plus 132, 162 (2017)CrossRefGoogle Scholar
  40. Yomba, E.: Jacobi elliptic function solutions of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and t-dependent coefficients. Phys. Lett. A 374, 1611–1615 (2010)ADSMathSciNetCrossRefGoogle Scholar
  41. Zayed, E., Alurr, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016)MathSciNetGoogle Scholar
  42. Zhang, L.H., Si, J.G.: New soliton and periodic solutions of (2+1)-dimensional nonlinear Schröodinger equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2747–2754 (2010)ADSMathSciNetCrossRefGoogle Scholar
  43. Zhao, X.-J., Guo, R., Hao, H.-Q.: N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation. Appl. Math. Lett. 75, 114–120 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of ScienceJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Mathematics Department, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  3. 3.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations