Advertisement

Dark current transport mechanism associated with acceptor concentration in GaAs-based blocked-impurity-band (BIB) detectors

  • Xiaodong Wang
  • Yulu Chen
  • Xiaoyao Chen
  • Bingbing Wang
  • Chuansheng Zhang
  • Haoxing Zhang
  • Ming Pan
Article
  • 79 Downloads
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices

Abstract

Dark current transport mechanism associated with acceptor concentration in GaAs-based blocked-impurity-band (BIB) detectors has been investigated. Device structure, numerical models and simulation techniques are described in detail. By careful model and parameter calibration, the numerical simulation is completely consistent with the analytical calculation, proving the validity of simulation methods. Our results reveals that the carrier-transport modes of GaAs-based BIB detectors can be classified into two categories (i.e., electron current and hopping current), and the hopping current can be neglected compared with the electron current. Besides, it is demonstrated that the dark current of GaAs-based BIB detector is dominated by the drift–diffusion current and the generation-recombination current, and the both current components are monotonically decreasing functions of the acceptor concentration.

Keywords

GaAs Blocked-impurity-band (BIB) Blocking layer Absorption layer Dark current Spectral response 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61404120 and 61705201), Shanghai Rising-Star Program (Grant No. 17QB1403900), and Shanghai Sailing Program (Grant No. 17YF1418100).

References

  1. Cardozo, B.L.: GaAs blocked-impurity-band detectors for far-infrared astronomy. Doctoral thesis, University of California, Berkeley (2004)Google Scholar
  2. Hu, W., Ye, Z., Liao, L., Chen, H., Chen, L., Ding, R., He, L., Chen, X., Lu, W.: A 128 × 128 long wave length/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultra-low spectral crosstalk. Opt. Lett. 39, 5130–5133 (2014)CrossRefGoogle Scholar
  3. Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y.Q., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)CrossRefGoogle Scholar
  4. Mittleman, D.M., Jacobsen, R.H., Nuss, M.C.: T-ray imaging. IEEE J. Sel. Top. Quantum Electon. 2, 679–692 (1996)ADSCrossRefGoogle Scholar
  5. Qiu, W.C., Hu, W.D., Chen, L., Lin, C., Cheng, X.A., Chen, X.S., Lu, W.: Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans. Electron Devices 62, 1926–1931 (2015)ADSCrossRefGoogle Scholar
  6. Qiu, W.C., Hu, W.D., Lin, C., Chen, X.S., Lu, W.: Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays. Opt. Lett. 41, 828–831 (2016)ADSCrossRefGoogle Scholar
  7. Reichertz, L.A., Cardozo, B.L., Beeman, J.W., Larsen, D.I., Tschanz, S., Jakob, G., Katterloher, R., Haegel, N.M., Haller, E.E.: First results on GaAs blocked impurity band (BIB) structures for far-infrared detector arrays. In: Proceedings of SPIE, vol. 5883, p. 58830Q (2005)Google Scholar
  8. Reichertz, L.A. Beeman, J.W., Cardozo, B.L., Jakob, G., Katterloher, R., Haegel, N.M., Haller, E.E.: Development of a GaAs based BIB detector for sub-mm wavelengths. In: Proceedings of SPIE, vol. 6275, p. 62751S (2006)Google Scholar
  9. Shi, C., Zang, X.F., Chen, L., Peng, Y., Cai, B., Nash, G.R., Zhu, Y.M.: Compact broadband terahetz perfect absorber based on multi-interference and diffraction effects. IEEE Trans. THz Sci. Technol. 6, 40–44 (2016)CrossRefGoogle Scholar
  10. Siegel, P.H.: Terahertz technology. Nature 50, 910–928 (2002)Google Scholar
  11. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)ADSCrossRefGoogle Scholar
  12. Wang, X., Hu, W., Chen, X., Xu, J., Wang, L., Li, X., Lu, W.: Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes. J. Phys. D Appl. Phys. 44, 405102-1–405102-11 (2011)Google Scholar
  13. Wang, X.D., Hu, W.D., Chen, X.S., Lu, W.: The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans. Electron Devices 59, 1393–1401 (2012)ADSCrossRefGoogle Scholar
  14. Wang, X.D., Hu, W.D., Pan, M., Hou, L.W., Xie, W., Xu, J.T., Li, X.Y., Chen, X.S., Lu, W.: Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 115, 013103-1–013101-8 (2014)ADSGoogle Scholar
  15. Wang, X., Wang, B., Hou, L., Xie, W., Chen, X., Pan, M.: Design consideration of GaAs-based blocked-impurity-band detector with the absorbing layer formed by ion implantation. Opt. Quantum Electron. 47, 1347–1355 (2015)CrossRefGoogle Scholar
  16. Wang, X., Wang, B., Chen, Y., Hou, L., Xie, W., Chen, X., Pan, M.: Spectral response characteristics of novel ion-implanted planar GaAs blocked-impurity-band detectors in the terahertz domain. Opt. Quantum Electron. 48, 518 (2016a)CrossRefGoogle Scholar
  17. Wang, X., Wang, B., Chen, X., Chen, Y., Hou, L., Xie, W., Pan, M.: Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors. Infrared Phys. Technol. 79, 165–170 (2016b)ADSCrossRefGoogle Scholar
  18. Zhou, D., Hou, L., Xie, W., Zang, Y., Lu, B., Chen, J., Wu, P.: Practical dual-band terahertz imaging system. Appl. Opt. 56, 3148–3154 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.The 50th Research Institute of China Electronics Technology Group CorporationShanghaiChina
  2. 2.Laboratory of Advanced MaterialFudan UniversityShanghaiChina

Personalised recommendations