Reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links with spatial diversity

  • Anjitha ViswanathEmail author
  • Virander Kumar Jain
  • Subrat Kar


In the scenario of first laser communication relay satellite being launched into geostationary earth orbit, we evaluate the reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links in presence of turbulence and various weather conditions using spatial diversity technique. In channel modeling, Beer Lambert Law incorporates the weather effects. The log-normal probability density function (pdf) models weak turbulence and gamma–gamma pdf moderate to strong turbulence. Using the combined channel state pdf, bit error rate (BER) expressions are derived for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. From the BER plots, we evaluate the minimum average received power required to achieve a desired BER for all three schemes for different channel conditions. Subsequently, minimum transmitter power requirement is evaluated for both uplink and downlink using the range equation. It is observed that presence of moderate, light and thin fog cause additional power requirement. Also, among the three schemes, M-PPM scheme requires the least transmitter power, followed by M-DPPM and OOK schemes. Further, it is seen that the transmitter diversity or multiple input single output technique reduces the uplink minimum transmitter power requirement, whereas for downlink aperture averaging and receiver diversity or single input multiple output techniques can achieve the same. The power requirement for uplink is 8–10 dB more as compared to downlink in presence of turbulence and various weather conditions.


Free space optical communication link Earth-to-satellite link Satellite-to-earth link Turbulence Pulse modulation Range equation Spatial diversity Aperture averaging 



I thank the ISRO Inertial Systems Unit (IISU), Thiruvananthapuram for providing me all the support to complete the manuscript.


  1. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press, Washington (2005)CrossRefGoogle Scholar
  2. Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications. SPIE Press, Washington (2001)CrossRefGoogle Scholar
  3. Arnon, S., Rotman, S., Kopeika, N.S.: Optimum transmitter optics aperture for satellite optical communication. IEEE Trans. Aerosp. Electr. Syst. 34(2), 590–596 (1998)ADSCrossRefGoogle Scholar
  4. Arnon, S., Uysal, M., Ghassemlooy, Z., Xu, Z., Cheng, J.: Optical wireless communications. IEEE J. Sel. Areas Commun. 33(9), 1733–1737 (2015)CrossRefGoogle Scholar
  5. Barcik, P., Hudcov, L.: Measurement of spatial coherence of light propagating in a turbulent atmosphere. Radio Eng. 22(1), 341–345 (2013)Google Scholar
  6. Bouchet, O.: Free Space Optics: Propagation and Communication. Wiley Press, London (2006)CrossRefGoogle Scholar
  7. Chaudhary, S., Amphawan, A.: The role and challenges of free space optical systems. J. Opt. Commun. 35(4), 327–334 (2014)CrossRefGoogle Scholar
  8. Dios, F., Rubio, J., Rodrfguez, A., Comern, A.: Scintillation and beam-wander analysis in an optical ground station satellite uplink. Appl. Opt. 43(19), 3866–3873 (2004)ADSCrossRefGoogle Scholar
  9. Fidler, F., Knapek, M., Horwath, J., Leeb, W.R.: Optical communications for high-altitude platforms. IEEE J. Sel. Topics Quantum Electr. 16(5), 1058–1070 (2010)ADSCrossRefGoogle Scholar
  10. First space data highway laser relay in orbit. Accessed Jan 2016
  11. Gappmair, W.: Novel results on pulse position modulation performance for terrestrial free-space optical links impaired by turbulent atmosphere and pointing errors. IET Commun. 6(10), 1300–1305 (2012)MathSciNetCrossRefGoogle Scholar
  12. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communication. CRC Press, Boca Raton (2012)Google Scholar
  13. Ghassemlooy, Z., Popoola W., et al.: A synopsis of modulation techniques for wireless infrared communication. In: Proceedings of International Conference on Transparent Optical Networks Mediterranean Winter, pp. 1–6 (2007)Google Scholar
  14. Gomez, A.R., Dios, F., et al.: Temporal statistics of the beam-wander contribution to scintillation in ground-to-satellite optical links: an analytical approach. Appl. Opt. 44(21), 4574–4581 (2005)ADSCrossRefGoogle Scholar
  15. Guo, H., Luo, B., Ren, Y., Zhao, S., Danq, A.: Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Opt. Lett. 35(12), 1977–1979 (2010)ADSCrossRefGoogle Scholar
  16. Haykin, S.: Digital Communications. Wiley, London (2006)Google Scholar
  17. Jiang, Y., Tao, K., Song, Y., Fu, S.: Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite laser uplink communications. Appl. Opt. 53(7), 1268–1273 (2014)ADSCrossRefGoogle Scholar
  18. Karafolas, N., Baroni, S.: Optical satellite networks. J. Lightwave Technol. 18(12), 1792–1806 (2000)ADSCrossRefGoogle Scholar
  19. Kaur, P., Jain, V.K., Kar, S.: Performance analysis of FSO array receivers in presence of atmospheric turbulence. IEEE Photonics Lett. Tecnol. 26(12), 1165–1168 (2014)CrossRefGoogle Scholar
  20. Kazemi, A.A., Panahi, A.: Space based laser systems for inter-satellite communications. In: Proceedings of SPIE, pp. 83680H-1–83680H-9 (2012)Google Scholar
  21. Khalighi, M., Schwartz, N., Aitamer, N., Bourennane, S.: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. J. Opt. Commun. Netw. 1(6), 580–593 (2009)CrossRefGoogle Scholar
  22. Khalighi, M., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  23. Latinovic, V.: Advanced Optical Communication Systems. Clanrye International, New York (2015)Google Scholar
  24. Li, X., Ma, J.: Optimum signal input distribution design in the presence of random pointing jitter for intersatellite optical communications. Opt. Laser Technol. 45, 705–707 (2013)ADSCrossRefGoogle Scholar
  25. Liao, H., Zhang, Q., et al.: Performance evaluation of channel coding and aperture averaging for satellite-to-ground optical communications with APD receivers. In: Proceedings of 6th International Conference on Communication and Network, pp. 899–902 (2011)Google Scholar
  26. Liu, X.: Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading. Appl. Opt. 49(5), 915–919 (2010)ADSCrossRefGoogle Scholar
  27. Ma, J., Jiang, Y., Yu, S., Tan, L., Du, W.: Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Opt. Commun. 283(2), 237–242 (2010)ADSCrossRefGoogle Scholar
  28. Majumdar, A.K.: Advanced Free Space Optics (FSO)—A Systems Approach. Springer, New York (2015)Google Scholar
  29. Majumdar, A.K., Ricklin, J.C.: Free Space Laser Communications : Principles and Advances. Springer, New York (2007)Google Scholar
  30. Nistazakis, H.E., Sandalidis, H.G., et al.: Optical wireless links with spatial diversity over strong turbulence channels. IEEE Trans. Wirel. Commun. 8(2), 951–957 (2009)CrossRefGoogle Scholar
  31. Panahi, A., Kazemi, A.A.: High speed laser communication network for satellite systems. In: Proceedings of SPIE, pp. 80260L-1–80260L-12 (2011)Google Scholar
  32. Patnaik, B., Sahu, P.K.: Inter-satellite optical wireless communication system design and simulation. IET Commun. 6(16), 2561–2567 (2012)CrossRefGoogle Scholar
  33. Prudnikov, A., Brychkov, Y., Marichev, O.: Integrals and Series. Gordon and Breach Publishers, Amsterdam (1986)zbMATHGoogle Scholar
  34. Rajbhandari, S., Ghassemlooy, Z., Haigh, P., Kanesan, T., Tang, X.: Experimental error performance of modulation schemes under a controlled laboratory turbulence FSO channel. J. Lightwave Technol. 33(1), 244–250 (2015)ADSCrossRefGoogle Scholar
  35. Sandalidis, H.G.: Performance analysis of a laser ground station-to-satellite link with modulated gamma distributed irradiance fluctuations. J. Opt. Commun. Netw. 2(11), 938–943 (2010)CrossRefGoogle Scholar
  36. Sandalidis, H.G.: Performance of a laser earth-to-satellite link over turbulence and beam wander using the modulated gamma-gamma irradiance distribution. Appl. Opt. 50(6), 952–961 (2011)ADSCrossRefGoogle Scholar
  37. Sodnik, Z., Furch, B., Lutz, H.: Optical intersatellite communication. IEEE J. Sel. Top. Quantum Electr 16(5), 1051–1057 (2010)ADSCrossRefGoogle Scholar
  38. Successful launch of the first laser telecommunication satellite of the space data highway. Accessed Feb 2016
  39. Sun, X., Skillman, D.R.: Free space laser communication experiments from earth to the lunar reconnaissance orbiter in lunar orbit. Opt. Express 21(2), 1865–1871 (2013)ADSCrossRefGoogle Scholar
  40. The wolfram functions. Accessed Nov 2015
  41. Tolker-Niesen, T., Oppenhaeuser, G.: In orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. In: Proceedings of SPIE, pp. 4635-1–4635-15 (2002)Google Scholar
  42. Toyoshima, M.: Trends in satellite communication and the role of optical free-space communications. J. Opt. Netw. 4(6), 300–311 (2005)CrossRefGoogle Scholar
  43. Toyoshima, M., Takayama, Y.: Ground-to-satellite laser communication experiments. IEEE Aerosp. Electron. Syst. Mag. 23(8), 10–18 (2008)CrossRefGoogle Scholar
  44. Viswanath, A., Gopal, P., Jain, V.K., Kar, S.: Performance enhancement by aperture averaging in terrestrial and satellite free space optical links. IET Optoelectr. 10(3), 111–117 (2016)CrossRefGoogle Scholar
  45. Viswanath, A., Jain, V.K., Kar, S.: Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes. IET Commun. 9(18), 2253–2258 (2015)CrossRefGoogle Scholar
  46. Viswanath, A., Kaushal, H., Jain, V.K., Kar, S.: Evaluation of performance of ground to satellite free space optical link under turbulence conditions for different intensity modulation schemes. In: Proceedings of SPIE Photonics West, San Francisco, USA, pp. 8971-1–8971-12 (2014)Google Scholar
  47. Viswanath, A., Jain, V.K., Kar, S.: Experimental evaluation of the effect of aperture averaging technique on the performance of free space optical communication link for different intensity modulation schemes. In: COMmunication Systems and NETworkS (COMSNETS), Bangalore, India, pp. 1–5 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Bharti School of Telecommunication Technology and Management, Electrical Engineering DepartmentIndian Institute of Technology DelhiHauz Khas, New DelhiIndia

Personalised recommendations