A new simulation design of three-mode division (de)multiplexer based on a trident coupler and two cascaded 3 × 3 MMI silicon waveguides

  • Anh Tuan TranEmail author
  • Dung Cao Truong
  • Hung Tan Nguyen
  • Yem Van Vu


We propose a design of a silicon three-mode (de)multiplexing device based on a trident and two cascaded 3 × 3 multimode interferometers. Input lights at fundamental, first-order, and second-order modes of transverse electric (TE) polarization are simultaneously converted to fundamental TE mode and demultiplexed at different ports at the outputs. The design is carried out through both theoretical analysis and numerical simulation using three dimensional-beam propagation method and effective index method. The results show a successful three-mode multiplexing in 100 nm wavelength range around 1550 nm with low insertion loss (< 0.71 dB) and crosstalk (− 18 dB). The proposed device also exhibit a small footprint (5 µm × 400 µm) that makes it potential for not only wavelength-division multiplexing and multimode-division multiplexing transmission systems, but also high bitrate and compact on-chip silicon photonics integrated circuits.


Mode (de)multiplexer MMI coupler Silicon on insulator (SOI) Beam propagation method (BPM) Effective index method (EIM) Waveguide TE mode 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant program for excellent scientific publication.


  1. Bachmann, M., Besse, P.A., Melchior, H.: General self-imaging properties in N × N multimode interference couplers including phase relations. Appl. Opt. 33(18), 3905–3911 (1994)ADSCrossRefGoogle Scholar
  2. Bai, N., Ip, E., Huang, Y.-K., Mateo, E., Yaman, F., Li, M.-J., Bickham, S., Ten, S., Liñares, J., Montero, C., Moreno, V., Prieto, X., Tse, V., Chung, K.M., Lau, A.P.T., Tam, H.-Y., Lu, C., Luo, Y., Peng, G.-D., Li, G., Wang, T.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)ADSCrossRefGoogle Scholar
  3. Bergano, N.S., Davidson, C.R.: Wavelength division multiplexing in long-haul transmission systems. J. Light Technol. 14(6), 1299–1308 (1996)ADSCrossRefGoogle Scholar
  4. Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science (80-) 340(6140), 1545–1548 (2013)ADSCrossRefGoogle Scholar
  5. Chen, W., Wang, P., Yang, J.: Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express 21(21), 25113–25119 (2013)ADSCrossRefGoogle Scholar
  6. Dai, D., Wang, J., Shi, Y.: Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 38(9), 1422–1424 (2013)ADSCrossRefGoogle Scholar
  7. De Yang, Y., Li, Y., Huang, Y.Z., Poon, A.W.: Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt. Express 22(18), 22172–22183 (2014)ADSCrossRefGoogle Scholar
  8. Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J., Wang, W.: Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40(4), 518–521 (2015)ADSCrossRefGoogle Scholar
  9. Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tsujikawa, K., Koshiba, M., Yamamoto, F.: Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22(24), 29321–29330 (2014)ADSCrossRefGoogle Scholar
  10. Kubota, H., Oguma, M., Takara, H.: Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2 + 1 mode bi-directional optical communication. IEICE Electron. Express 10(12), 1–6 (2013)CrossRefGoogle Scholar
  11. Leon-Saval, S.G., Fontaine, N.K., Salazar-Gil, J.R., Ercan, B., Ryf, R., Bland-Hawthorn, J.: Mode-selective photonic lanterns for space-division multiplexing. Opt. Express 22(1), 1036–1044 (2014)ADSCrossRefGoogle Scholar
  12. Li, Y., Li, C., Li, C., Cheng, B., Xue, C.: Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides. Opt. Express 22(5), 5781 (2014)ADSCrossRefGoogle Scholar
  13. Lim, S.T., Png, C.E., Ong, E.A., Ang, Y.L.: Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments. Opt. Express 15(18), 11061–11072 (2007)ADSCrossRefGoogle Scholar
  14. Luo, L.-W., Ophir, N., Chen, C.P., Gabrielli, L.H., Poitras, C.B., Bergmen, K., Lipson, M.: WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1–7, Article ID 3069 (2014)Google Scholar
  15. Randel, S., Ryf, R., Sierra, A., Winzer, P.J., Gnauck, A.H., Bolle, C.A., Essiambre, R.-J., Peckham, D.W., McCurdy, A., Lingle, R.: 6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6 × 6 MIMO equalization. Opt. Express 19(17), 16697–16707 (2011)ADSCrossRefGoogle Scholar
  16. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Sierra, A., Mumtaz, S., Esmaeelpour, M., Burrows, E.C., Essiambre, R.J., Winzer, P.J., Peckham, D.W., McCurdy, A.H., Lingle, R.: Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Light Technol. 30(4), 521–531 (2012)ADSCrossRefGoogle Scholar
  17. Saitoh, F., Saitoh, K., Koshiba, M.: A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing. Opt. Express 18(5), 4709–4716 (2010)ADSCrossRefGoogle Scholar
  18. Salsi, M., Koebele, C., Sperti, D., Tran, P., Mardoyan, H., Brindel, P., Bigo, S., Boutin, A., Verluise, F., Sillard, P., Astruc, M., Provost, L., Charlet, G.: Mode-division multiplexing of 2 × 100 Gb/s channels using an LCOS-based spatial modulator. J. Light Technol. 30(4), 618–623 (2012)ADSCrossRefGoogle Scholar
  19. Soldano, L.B., Pennings, E.C.M.: Optical multi-mode interference devices based on self-imaging: principles and applications. J. Light Technol. 13(4), 615–627 (1995)ADSCrossRefGoogle Scholar
  20. Stern, B., Zhu, X., Chen, C., Tzuang, L., Cardenas, J., Bergman, K., Lipson, M.: Integrated switch for mode-division multiplexing (MDM) and wavelength-division multiplexing (WDM). In: Cleo: 2015, no. Mdm, STh1F.2, 1–2 (2015)Google Scholar
  21. Udalcovs, A., Monti, P., Bobrovs, V., Schatz, R., Wosinska, L., Ivanovs, G.: Spectral and energy efficiency considerations in mixed-line rate WDM networks with signal quality guarantee. In: International Conference on Transparent Optical Networks, no. i, pp. 1–7 (2013)Google Scholar
  22. Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Light Technol. 30(15), 2421–2426 (2012)ADSCrossRefGoogle Scholar
  23. Zhang, Z., Hu, X., Wang, J.: On-chip optical mode exchange using tapered directional coupler. Sci. Rep. 5, 1–8, Article ID 16072 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.Posts and Telecomunications Institute of TechnologyHanoiVietnam
  3. 3.The University of Danang – University of Science and TechnologyDa NangVietnam

Personalised recommendations