Advertisement

An efficient method based on FIR filtering and fourier transform for solving the eigen-problems in optoelectronic devices

  • Hongyu Li
  • Yanping Xi
  • Xun Li
Article
  • 73 Downloads

Abstract

This paper presents a highly efficient method based on finite impulse response filtering and Fourier transform techniques to solve the eigen-problems, especially with smoothly varying inhomogeneous-core, such as solving optical eigen modes in graded-index optical waveguides and electronic eigen states in intermixed quantum wells. This type of structure is normally less efficient to be dealt with in space domain directly, but bears with a narrow spectrum in spatial frequency domain. Simulation examples show that the computation cost of the proposed method is approximately at least one order of magnitude smaller than that of the conventional finite difference method solved by the most efficient multiple relatively robust representations method.

Keywords

Eigenvalues Eigenfunctions Finite impulse response Fourier transforms 

Notes

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant 61405068.

References

  1. Adams, M.J.: The cladded parabolic-index profile waveguide: analysis and application to stripe-geometry lasers. Opt. Quant. Electron. 10(1), 17–29 (1978).  https://doi.org/10.1007/bf00620240 ADSCrossRefGoogle Scholar
  2. Chuang, S.L.: Physics of optoelectronic devices. Wiley, New York (1995)Google Scholar
  3. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004).  https://doi.org/10.1016/j.laa.2003.12.028 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Gu, M., Eisenstat, S.C.: A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem. SIAM J. Matrix Anal Appl 16(1), 172–191 (1995).  https://doi.org/10.1137/s0895479892241287 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Horikis, T.P.: Eigenstate calculation of arbitrary quantum structures. Phys. Lett. A 359(5), 345–348 (2006).  https://doi.org/10.1016/j.physleta.2006.06.072 ADSCrossRefzbMATHGoogle Scholar
  6. Jonsson, B., Eng, S.T.: Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J. Quantum Electron. 26(11), 2025–2035 (1990)ADSCrossRefGoogle Scholar
  7. Lüsse, P., Stuwe, P., Schüle, J., Unge, H.-G.: Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. 12(3), 487–494 (1994)ADSCrossRefGoogle Scholar
  8. Li, L.: Fourier Modal Method. In: E. Popov, e. (ed.) Gratings: Theory and Numeric Applications, Second Revisited Edition. pp. 13.11–13.40. (Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, (2014)Google Scholar
  9. Li, W.: Generalized Free Wave Transfer Matrix Method for Solving the Schrödinger Equation With an Arbitrary Potential Profile. IEEE J. Quantum Electron. 46(6), 970–975 (2010).  https://doi.org/10.1109/JQE.2010.2043060 ADSCrossRefGoogle Scholar
  10. Marsh, J.: Quantum well intermixing. Semicond. Sci. Technol. 8(6), 1136–1155 (1993)ADSCrossRefGoogle Scholar
  11. Martin, R.S., Reinsch, C., Wilkinson, J.H.: Householder’s tridiagonalization of a symmetric matrix. Numer. Math. 11(3), 181–195 (1968)MathSciNetCrossRefGoogle Scholar
  12. Moldaschl, M., Gansterer, W.N.: Comparison of eigensolvers for symmetric band matrices. Sci. Comput. Program. (2014).  https://doi.org/10.1016/j.scico.2014.01.005 CrossRefGoogle Scholar
  13. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  14. Qiu, Y.N., Sun, H.D., Rorison, J.M., Calvez, S., Dawson, M.D., Bryce, A.C.: Quantum-well intermixing influence on GaInNAs/GaAs quantum-well laser gain: theoretical study. Semicond. Sci. Technol. 23(9), 095010 (2008).  https://doi.org/10.1088/0268-1242/23/9/095010 ADSCrossRefGoogle Scholar
  15. Ram-Mohan, L.R.: The Schrödinger-Poisson self-consistency in layered quantum semiconductor structures. J. Appl. Phys. 95(6), 3081–3092 (2004).  https://doi.org/10.1063/1.1649458 ADSCrossRefGoogle Scholar
  16. Schwarz, H.R.: Tridiagonalization of a Symmetric Band Matrix. In: Bauer, F.L., Householder, A.S., Olver, F.W.J., Rutishauser, H., Samelson, K., Stiefel, E. (eds.) Handbook for Automatic Computation: Volume II: Linear Algebra, pp. 273–283. Springer, Berlin Heidelberg (1971)CrossRefGoogle Scholar
  17. Sonkar, R., Das, U.: Quantum well intermixed waveguide grating. Opt. Quantum Electron. 42(9–10), 631–643 (2011).  https://doi.org/10.1007/s11082-011-9486-3 CrossRefGoogle Scholar
  18. Stern, M.S.: Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles. IEE Procee. J. Optoelectron. 135(1), 56–63 (1988).  https://doi.org/10.1049/ip-j.1988.0013 CrossRefGoogle Scholar
  19. Vassallo, C., van der Keur, J.M.: Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers. J. Lightwave Technol. 15(2), 397–402 (1997).  https://doi.org/10.1109/50.554394 ADSCrossRefGoogle Scholar
  20. Vlaev, S., Contreras-Solorio, D.A.: Electronic states in diffused quantum wells. J. Appl. Phys. 82(8), 3853–3856 (1997).  https://doi.org/10.1063/1.365750 ADSCrossRefGoogle Scholar
  21. Yih-Peng, C., Yen-Chung, C., Hung-Chun, C.: Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices. J. Lightwave Technol. 18(2), 243–251 (2000).  https://doi.org/10.1109/50.822799 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations