Multiple propagating modes of nanowire plasmonics

  • Hyoung-In LeeEmail author
  • Jinsik Mok
  • Dmitry A. Kuzmin
  • Igor V. Bychkov


We investigate electromagnetic waves propagating along a metallic wire with a closer look at multiple propagating modes. To this goal, metallic loss is examined for its influence on a hybrid wave. The number of resonance modes is found to strongly depend on the rotational azimuthal mode indices. Based on the highest quality factor, selections are made among the multiple modes. We captured both divisions and mergers of the wave-number extents of the residual functions signifying the nonlinear dispersion relation. In addition, the migrations of the groups of local minima for multiple modes are illustrated from a viewpoint of quasi-temporal evolution. Furthermore, we illustrate collective behaviors of nanowire plasmonics in terms of two constituent waves and their interactions.


Plasmonics Electromagnetic waves Nanowire Azimuthal mode index Metallic loss Merger Division Evolution 



This study has been supported by the National Research Foundation (NRF) of Republic of Korea (Grant Numbers: NRF-2011-0023612 and NRF-2015R1D1A1A01056698).

Supplementary material

11082_2016_772_MOESM1_ESM.docx (15.6 mb)
Supplementary material 1 (DOCX 15966 kb)

Supplementary material 2 (MP4 1626 kb)

Supplementary material 3 (MP4 1973 kb)

Supplementary material 4 (MP4 2201 kb)

Supplementary material 5 (MP4 1628 kb)

Supplementary material 6 (MP4 2215 kb)

Supplementary material 7 (MP4 2517 kb)


  1. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007)ADSCrossRefGoogle Scholar
  2. Chen, J., Wang, X.: Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric. Opt. Lett. 39, 4088–4091 (2014)ADSCrossRefGoogle Scholar
  3. Cho, C.-H., Aspetti, C.O., Turk, M.E., Kikkawa, J.M., Nam, S.-W., Agarwal, R.: Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater. 10, 669–675 (2011)ADSCrossRefGoogle Scholar
  4. Etchegoin, P.G., Le Ru, E.C., Meyer, M.: An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)ADSCrossRefGoogle Scholar
  5. Fan, T.Y.: Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005)CrossRefGoogle Scholar
  6. Gao, Y., Ren, G., Zhu, B., Liu, H., Lian, Y., Jian, S.: Analytical model for plasmon modes in graphene-coated nanowire. Opt. Express 22, 24322–24331 (2014)ADSCrossRefGoogle Scholar
  7. Goodfellow, K.M., Beams, R., Chakraborty, C., Novotny, L., Vamivakas, A.N.: Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica 1, 149–152 (2014)CrossRefGoogle Scholar
  8. Huang, Y.J., Lu, W.T., Sridhar, S.: Nanowire waveguide made from extremely anisotropic metamaterials. Phys. Rev. A 77, 063836 (2008)ADSCrossRefGoogle Scholar
  9. Huard, S.: Polarization of light. In: Optical Fibres, pp. 264–273. Wiley, New York (1997)Google Scholar
  10. Ke, S., Wang, B., Qin, C., Long, H., Wang, K., Lu, P.: Exceptional Points and Asymmetric Mode Switching in Plasmonic Waveguides. (2016). arXiv:1608.00204
  11. Kuzmin, D.A., Bychkov, I.V., Shavrov, V.G.: Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber. Opt. Lett. 40, 890–893 (2015)ADSCrossRefGoogle Scholar
  12. Liaw, J., Wu, P.-T.: Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface. Opt. Express 16, 4945–4951 (2008)ADSCrossRefGoogle Scholar
  13. Liu, W., Wang, B., Ke, S., Qin, C., Long, H., Wang, K., Peixiang, L.: Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers. Opt. Express 24, 14765–14780 (2016)ADSCrossRefGoogle Scholar
  14. Marcuse, D.: Theory of Dielectric Optical Waveguides (Quantum electronics-principles and applications), p. 62. Academic Press, New York (1974)Google Scholar
  15. Novotny, L., Hafner, C.: Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50, 4094 (1994)ADSCrossRefGoogle Scholar
  16. Qin, C., Wang, B., Huang, H., Long, H., Wang, K., Lu, P.: Low-loss plasmonic supermodes in graphene multilayers. Opt. Express 22, 25324–25332 (2014)ADSCrossRefGoogle Scholar
  17. Schroeter, U.S., Dereaux, A.: Surface plasmon polaritons on metal cylinders with dielectric core. Phys. Rev. B 64, 125420 (2001)ADSCrossRefGoogle Scholar
  18. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)ADSCrossRefGoogle Scholar
  19. Wang, K., Mittleman, D.M.: Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Phys. Rev. Lett. 96, 157401 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hyoung-In Lee
    • 1
    Email author
  • Jinsik Mok
    • 2
  • Dmitry A. Kuzmin
    • 3
  • Igor V. Bychkov
    • 3
  1. 1.Research Institute of MathematicsSeoul National UniversityGwanak-gu, SeoulKorea
  2. 2.Department of Industrial and Management EngineeringSunmoon UniversityAsanKorea
  3. 3.Chelyabinsk State UniversityChelyabinskRussian Federation

Personalised recommendations