Advertisement

Optimization and Engineering

, Volume 20, Issue 4, pp 1117–1159 | Cite as

Adjustable Robust Optimization for multi-tasking scheduling with reprocessing due to imperfect tasks

  • Nikos H. Lappas
  • Luis A. Ricardez-Sandoval
  • Ricardo Fukasawa
  • Chrysanthos E. GounarisEmail author
Research Article

Abstract

This work contemplates the optimal scheduling of multi-tasking production environments where the processing tasks are subject to uncertain success rates. Such problems arise in many industrial applications that have the potential to yield non compliant products, which must then be reprocessed. We address this problem by mapping the multi-tasking sequential recipe into a State-Task Network representation that includes suitably defined recycle streams to accommodate the option for reprocessing. This allows us to utilize a variant of an established global-event continuous time scheduling formulation to model the overall problem, as well as to employ an Adjustable Robust Optimization framework to account for the uncertainty in the production yields associated with each processing task. We assess the computational performance of the proposed approach via a comprehensive study that involves a large database of multi-tasking scheduling benchmark problems, and we demonstrate that instances involving more than 100 uncertain parameters can be addressed within reasonable computational times. Our results also help elucidate the expected amount of cost premium to insure against various levels of uncertainty in the production success rates.

Keywords

Process scheduling Multi-tasking scheduling Robust optimization 

Notes

Acknowledgements

C.E.G. and N.H.L. gratefully acknowledge support from the National Science Foundation (Grant No. CBET-1510787). N.H.L. further acknowledges support from the University of Patras via an Andreas Mentzelopoulos scholarship. L.R. and R.F. gratefully acknowledge the support provided by the Natural Sciences and Engineering Research Council of Canada. The authors would also like to acknowledge the support provided by a collaborating company in the scientific services sector.

References

  1. Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Program 99(2):351–376.  https://doi.org/10.1007/s10107-003-0454-y MathSciNetCrossRefzbMATHGoogle Scholar
  2. Castro PM, Barbosa-po AP, Matos HA, Novais AQ (2004) Simple continuous-time formulation for short-term scheduling of batch and continuous processes. Ind Eng Chem Res 43(1):105–118.  https://doi.org/10.1021/ie0302995 CrossRefGoogle Scholar
  3. Ferrer-Nadal S, Capon-Garcia E, Mendez CA, Puigjaner L (2008) Material transfer operations in batch scheduling. A critical modeling issue. Ind Eng Chem Res 47(20):7721–7732.  https://doi.org/10.1021/ie800075u CrossRefGoogle Scholar
  4. Floudas CA, Lin X (2005) Mixed integer linear programming in process scheduling: modeling, algorithms, and applications. Ann Oper Res 139(1):131–162.  https://doi.org/10.1007/s10479-005-3446-x MathSciNetCrossRefzbMATHGoogle Scholar
  5. Gorissen BL, Yanıkoǧlu İ, den Hertog D (2015) A practical guide to robust optimization. Omega 53:124–137.  https://doi.org/10.1016/j.omega.2014.12.006 CrossRefGoogle Scholar
  6. Grossmann IE, Balasubramanian J (2004) Approximation to multistage stochastic optimization in multiperiod batch plant scheduling under demand uncertainty. Ind Eng Chem Res 43(14):3695–3713.  https://doi.org/10.1021/ie030308+ CrossRefGoogle Scholar
  7. Grossmann IE, Apap RM, Calfa BA, García-Herreros P, Zhang Q (2016) Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. Comput Chem Eng 91:3–14.  https://doi.org/10.1016/j.compchemeng.2016.03.002 CrossRefGoogle Scholar
  8. Gupta D, Maravelias CT, Wassick JM (2016) From rescheduling to online scheduling. Chem Eng Res Des 116:83–97CrossRefGoogle Scholar
  9. Guzman YA, Matthews LR, Floudas CA (2016) New a priori and a posteriori probabilistic bounds for robust counterpart optimization: I. Unknown probability distributions. Comput Chem Eng 84:568–598.  https://doi.org/10.1016/j.compchemeng.2015.09.014 CrossRefGoogle Scholar
  10. Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, Hooker J, Méndez CA, Sand G, Wassick JM (2014) Scope for industrial applications of production scheduling models and solution methods. Comput Chem Eng 62:161–193.  https://doi.org/10.1016/j.compchemeng.2013.12.001 CrossRefGoogle Scholar
  11. Ierapetritou MG, Pistikopoulos EN (1996) Batch plant design and operations under uncertainty. Ind Eng Chem Res 35(3):772–787.  https://doi.org/10.1021/ie950263f CrossRefGoogle Scholar
  12. Kallrath J (2002) Planning and scheduling in the process industry. OR Spectr 24(3):219–250.  https://doi.org/10.1007/s00291-002-0101-7 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Lagzi S, Fukasawa R, Ricardez-Sandoval LA (2017a) A multitasking continuous time formulation for short-term scheduling of operations in multipurpose plants. Comput Chem Eng 97:135–146.  https://doi.org/10.1016/j.compchemeng.2016.11.012 CrossRefGoogle Scholar
  14. Lagzi S, Lee DY, Fukasawa R, Ricardez-Sandoval L (2017b) A computational study of continuous and discrete time formulations for a class of short-term scheduling problems for multipurpose plants. Ind Eng Chem Res 56(31):8940–8953.  https://doi.org/10.1021/acs.iecr.7b01718 CrossRefGoogle Scholar
  15. Lappas NH, Gounaris CE (2016) Multi-stage adjustable robust optimization for process scheduling under uncertainty. AIChE J 62(5):1646–1667.  https://doi.org/10.1002/aic.15183 CrossRefGoogle Scholar
  16. Lappas NH, Gounaris CE (2018a) Theoretical and computational comparison of continuous-time process scheduling models for adjustable robust optimization. AIChE J 64(8):3055–3070.  https://doi.org/10.1002/aic.16124 CrossRefGoogle Scholar
  17. Lappas NH, Gounaris CE (2018b) Robust optimization for decision-making under endogenous uncertainty. Comput Chem Eng 111:252–266.  https://doi.org/10.1016/j.compchemeng.2018.01.006 CrossRefGoogle Scholar
  18. Lee H, Maravelias CT (2017) Discrete-time mixed-integer programming models for short-term scheduling in multipurpose environments. Comput Chem Eng.  https://doi.org/10.1016/j.compchemeng.2017.06.013 CrossRefGoogle Scholar
  19. Li Z, Ierapetritou MG (2008a) Process scheduling under uncertainty: review and challenges. Comput Chem Eng 32(4–5):715–727.  https://doi.org/10.1016/j.compchemeng.2007.03.001 CrossRefGoogle Scholar
  20. Li Z, Ierapetritou MG (2008b) Reactive scheduling using parametric programming. AIChE J 54(10):2610–2623.  https://doi.org/10.1002/aic.11593 CrossRefGoogle Scholar
  21. Li Z, Ierapetritou MG (2008c) Robust optimization for process scheduling under uncertainty. Ind Eng Chem Res 47(12):4148–4157.  https://doi.org/10.1021/ie071431u CrossRefGoogle Scholar
  22. Lin X, Janak SL, Floudas CA (2004) A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Comput Chem Eng 28(6–7):1069–1085.  https://doi.org/10.1016/j.compchemeng.2003.09.020 CrossRefGoogle Scholar
  23. Maravelias CT (2012) General framework and modeling approach classification for chemical production scheduling. AIChE J 58(6):1812–1828.  https://doi.org/10.1002/aic.13801 CrossRefGoogle Scholar
  24. Méndez CA, Cerdá J (2003) An MILP continuous-time framework for short-term scheduling of multipurpose batch processes under different operation strategies. Optim Eng 4(1/2):7–22.  https://doi.org/10.1023/A:1021856229236 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Mendez CA, Cerdá J (2004) An MILP framework for batch reactive scheduling with limited discrete resources. Comput Chem Eng 28(6–7):1059–1068.  https://doi.org/10.1016/j.compchemeng.2003.09.008 CrossRefGoogle Scholar
  26. Méndez CA, Cerdá J, Grossmann IE, Harjunkoski I, Fahl M (2006) State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng 30(6–7):913–946.  https://doi.org/10.1016/j.compchemeng.2006.02.008 CrossRefGoogle Scholar
  27. Patil BP, Fukasawa R, Ricardez-Sandoval LA (2015) Scheduling of operations in a large-scale scientific services facility via multicommodity flow and an optimization-based algorithm. Ind Eng Chem Res 54(5):1628–1639.  https://doi.org/10.1021/ie503660f CrossRefGoogle Scholar
  28. Ryu J, Dua V, Pistikopoulos EN (2007) Proactive scheduling under uncertainty: a parametric optimization approach. Ind Eng Chem Res 46(24):8044–8049.  https://doi.org/10.1021/ie070018j CrossRefGoogle Scholar
  29. Sundaramoorthy A, Maravelias CT (2011) A general framework for process scheduling. AIChE J 57(3):695–710.  https://doi.org/10.1002/aic.12300 CrossRefGoogle Scholar
  30. Verderame PM, Elia Josephine A, Li Jie, Floudas CA (2010) Planning and scheduling under uncertainty: a review across multiple sectors. Ind Eng Chem Res 49(9):3993–4017.  https://doi.org/10.1021/ie902009k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nikos H. Lappas
    • 1
  • Luis A. Ricardez-Sandoval
    • 2
  • Ricardo Fukasawa
    • 3
  • Chrysanthos E. Gounaris
    • 1
    Email author
  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada
  3. 3.Combinatorics and Optimization DepartmentUniversity of WaterlooWaterlooCanada

Personalised recommendations