Advertisement

Fast solver of optimal control problems constrained by Ohta-Kawasaki equations

  • 30 Accesses

Abstract

This paper is concerned with fast solver of distributed optimal control problems constrained by a nonlocal Cahn-Hilliard equation. By eliminating the control variable, a linear system on four-by-four block matrix form is obtained after discretization. Deforming the corresponding coefficient matrix into a form with special structure, an efficient preconditioner that can be utilized in an inner-outer way is designed, which leads to a fast Krylov subspace solver, that is robust with respect to mesh sizes, model parameters, and regularization parameters. Moreover, we prove that the eigenvalues of the corresponding preconditioned system are all real. Numerical experiments are presented to illustrate the robustness of the proposed solution methods.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems: Stokes control. Numer. Algorithms 74(1), 19–37 (2017)

  2. 2.

    Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. A. 31(2), 410–433 (2009)

  3. 3.

    Bai, Z.-Z.: Block preconditioners for elliptic PDE-constrained optimization problems. Computing 91(4), 379–395 (2011)

  4. 4.

    Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2012)

  5. 5.

    Barret, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equations with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318 (2001)

  6. 6.

    Benešová B., Melcher, C., Söli, E.: An implicit midpoint spectral approximation of nonlocal Cahn-Hilliard equations. SIAM J. Numer. Anal. 52(3), 1466–1496 (2014)

  7. 7.

    Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

  8. 8.

    Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)

  9. 9.

    Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn-Hilliard systems. Comput. Math. Appl. 67, 106–121 (2014)

  10. 10.

    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I: Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

  11. 11.

    Cao, Y., Jiang, M.-Q., Zheng, Y.-L.: A splitting preconditioner for saddle point problems. Numer. Linear Algebra Appl. 18(5), 875–895 (2011)

  12. 12.

    Elman, H.C., Ramage, A., Silvester, D.J.: Algorithm 866: IFISS, aMatlab toolbox formodelling incompressible flow. ACM Trans. Math. Software 33(2), 14 (2007)

  13. 13.

    Farrell, P.E., Pearson, J.W.: A preconditioner for the Ohta-Kawasaki equation. SIAM J. Matrix Anal. Appl. 38(1), 217–225 (2017)

  14. 14.

    Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system In two dimensions. SIAM J. Cotrol Optim. 54 (1), 221–250 (2016)

  15. 15.

    Herzog, R., Pearson, J.W., Stoll, M.: Fast iterative solvers for an optimal transport problem. Adv. Comput. Math. 45(2), 495–517 (2019)

  16. 16.

    Ipsen, I.C.F.: A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23, 1050–1051 (2001)

  17. 17.

    Ke. Y.-F., Ma, C.-F.: Some preconditioners for elliptic PDE-constrained optimization problems. Comput. Math. Appl. 75(8), 2795–2813 (2018)

  18. 18.

    Li, R.-X., Liang, Z.-Z., Zhang, G.-F., Liao, L.-D., Zhang, L.: A note on preconditioner for the Ohta-Kawasaki equation. Appl. Math. Lett. 85, 132–138 (2018)

  19. 19.

    Mirchi, H., Salkuyeh, D.K.: A new preconditioner for elliptic PDE-constrained optimization problems. Numer. Algorithms. https://doi.org/10.1007/s11075-019-00697-8 (2019)

  20. 20.

    Melloa, E., Filhob, O.: Numerical study of the Cahn-Hilliard equation of one, two, and three dimensions. Physica A. 347, 429–443 (2005)

  21. 21.

    Novick-Cohen, A.: The Cahn-Hilliard equation. Handbook of Differential Equations: Evolutionary Partial Differential Equations 4, 201–228 (2008)

  22. 22.

    Parsons, Q.: Numerical Approximation of the Ohta-Kawasaki Functional. Master’s thesis. University of Oxford, Oxford (2012)

  23. 23.

    Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 19(5), 816–829 (2012)

  24. 24.

    Rees, T., Wathen, A.J.: Preconditioning iterative methods for the optimal control of the Stokes equations. SIAM J. Sci. Comput. 33, 2903–2926 (2011)

  25. 25.

    Ren, Z.-R., Cao, Y.: An alternating positive-semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models. IMA J. Numer.Anal. 36(2), 922–946 (2015)

  26. 26.

    Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

  27. 27.

    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

  28. 28.

    Simoncini, V.: Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems. Comput. Optim. Appl. 53(2), 591–617 (2012)

  29. 29.

    Wang, Q.-F.: Optimal distributed control of nonlinear Cahn-Hilliard systems with computational realization. J. Math. Sci. 177(3), 440–458 (2011)

  30. 30.

    Wathen, A.J.: Preconditioning. Acta Numer. 24, 329–376 (1998)

  31. 31.

    Yin, J.: On the existence of nonnegative continuous solutions of the Cahn-Hilliard equations. J. Differ. Equ. 97, 310–327 (1992)

  32. 32.

    Zeng, M.-L., Zhang, G.-F.: A new preconditioning strategy for solving a class of time-dependent PDE-constrained optimization problems. J. Comput. Math. 32(3), 215–232 (2014)

  33. 33.

    Zhang, G.-F., Zheng, Z.: Block-symmertic and block-lower-triangular preconditioners for PDE constrained optimization problems. J. Comput. Math. 31 (4), 370–381 (2013)

  34. 34.

    Zhang, X.-L., Li, H.-L., Liu, C.-C.: Optimal control problem for the Cahn-Hilliard/Allen-Cahn Equation with state constraint. Appl. Math. Optim. https://doi.org/10.1007/s00245-018-9546-1 (2018)

  35. 35.

    Zhao, X.-P., Liu, C.-C.: Optimal control problem for viscous Cahn-Hilliard equation. Nonlinear Anal.-Theor. 74(17), 6348–6357 (2011)

  36. 36.

    Zheng, Z., Zhang, G.-F., Zhu, M.-Z.: A note on preconditioners for complex linear systems arising from PDE-constrained optimization problems. Appl. Math. Lett. 61, 114–121 (2016)

  37. 37.

    Zheng, J.-S.: Time optimal controls of the Cahn-Hilliard equation with internal control. Optim. Control Appl. Meth. 36, 566–582 (2015)

Download references

Author information

Correspondence to Guo-Feng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhang, G. & Liang, Z. Fast solver of optimal control problems constrained by Ohta-Kawasaki equations. Numer Algor (2020). https://doi.org/10.1007/s11075-019-00837-0

Download citation

Keywords

  • Cahn-Hilliard equation
  • Optimal control
  • Preconditioning
  • Iterative solution method
  • Spectral analysis