Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems
- 95 Downloads
Abstract
In the present paper, we propose a separate approach as a new strategy to solve the saddle point problem arising from the stochastic Galerkin finite element discretization of Stokes problems. The preconditioner is obtained by replacing the (1,1) and (1,2) blocks in the RHSS preconditioner by others well chosen and the parameter α in (2,2) −block of the RHSS preconditioner by another parameter β. The proposed preconditioner can be used as a preconditioner corresponding to the stationary itearative method or to accelerate the convergence of the generalized minimal residual method (GMRES). The convergence properties of the GMRHSS iteration method are derived. Meanwhile, we analyzed the eigenvalue distribution and the eigenvectors of the preconditioned matrix. Finally, numerical results show the effectiveness of the proposed preconditioner as compared with other preconditioners.
Keywords
Krylov subspace method Preconditioner Saddle point KroneckerMathematics Subject Classification (2010)
65F10 65N22 65F50Notes
Acknowledgments
The authors would like to thank Laura Dykes for enlightening comments and corrections on an early draft of this manuscript and would like to express their sincere thanks to the referees for their most valuable suggestions.
References
- 1.Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)MathSciNetCrossRefGoogle Scholar
- 2.Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2004)MathSciNetCrossRefGoogle Scholar
- 3.Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)MathSciNetCrossRefGoogle Scholar
- 4.Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)MathSciNetCrossRefGoogle Scholar
- 5.Bai, Z.-Z., Benzi, M.: Regularized HSS iteration methods for saddle-point. BIT Numer. Math. 57, 287–311 (2017)MathSciNetCrossRefGoogle Scholar
- 6.Benzi, M., Wathen, J.A.: Some preconditioning techniques for saddle point problems. Model Order Reduction: Theory. Res. Aspects and Appl. 13, 195–211 (2004)zbMATHGoogle Scholar
- 7.Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)MathSciNetCrossRefGoogle Scholar
- 8.Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)MathSciNetCrossRefGoogle Scholar
- 9.Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)MathSciNetCrossRefGoogle Scholar
- 10.Benner, P., Saak, J., Stoll, M., Weichelt, H.K.: Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)MathSciNetCrossRefGoogle Scholar
- 11.Bissuel, A., Allaire, G., Daumas, L., Chalot, F., Mallet, M.: Linear systems with multiple right-hand sides with GMRES, an application to aircraft design. ECCOMAS Congress (2016)Google Scholar
- 12.Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence proprieties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)MathSciNetCrossRefGoogle Scholar
- 13.Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Linear Algebra Appl. 15, 515–533 (2008)MathSciNetCrossRefGoogle Scholar
- 14.Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle point matrices. SIAM J. Sci. Comput. 27, 1555–1572 (2006)MathSciNetCrossRefGoogle Scholar
- 15.Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
- 16.Elman, H.C., Ramage, A., Silvester, D.J.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)CrossRefGoogle Scholar
- 17.Elbouyahyaoui, L., Messaoudi, A., Sadok, H.: Algebraic properties of the block GMRES and block Arnoldi methods. Elect Trans Numer Analysis. 33, 207–220 (2009)MathSciNetzbMATHGoogle Scholar
- 18.Ernst, O.G., Powell, C.E., Silvester, D.J., Ullmann, E.: Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput. 31, 1424–1447 (2009)MathSciNetCrossRefGoogle Scholar
- 19.Gould, N., Orban, D., Rees, T.: Projected Krylov methods for saddle-point system. SIAM J. Matrix Anal. Appl. 35, 1329–1343 (2014)MathSciNetCrossRefGoogle Scholar
- 20.Huang, Z.-G., Wang, G.-L., LG, Xu, Z. , Cui, J.-J.: A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. Numer. Algor. 75, 1161–1191 (2017)MathSciNetCrossRefGoogle Scholar
- 21.Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equation. Appl. Numer. Math. 31, 49–43 (1999)MathSciNetCrossRefGoogle Scholar
- 22.Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parametrized block triangular preconditioners for generalized saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)MathSciNetzbMATHGoogle Scholar
- 23.Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)MathSciNetCrossRefGoogle Scholar
- 24.Pestana, J., Wathen, A.J.: Combination preconditioning of saddle point systems for positive definiteness. Linear Algebra Appl. 20, 785–808 (2012)MathSciNetCrossRefGoogle Scholar
- 25.Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)MathSciNetCrossRefGoogle Scholar
- 26.Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)MathSciNetCrossRefGoogle Scholar
- 27.Pestana, J., Wathen, A.J.: A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36, 273–288 (2015)MathSciNetCrossRefGoogle Scholar
- 28.Powell, C.E., Silvester, D.J: Preconditioning steady-state Navier-Stokes equations with random data. SIAM J. Sci. Comput. 34, A2482–A2506 (2012)MathSciNetCrossRefGoogle Scholar
- 29.Rozloznik, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)MathSciNetCrossRefGoogle Scholar
- 30.Saad, Y., Schultz, M.: GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)CrossRefGoogle Scholar
- 31.Sadok, H.: Analysis of the convergence of the minimal and the orthogonal residual methods. Numer. Algor. 40, 101–115 (2005)MathSciNetCrossRefGoogle Scholar
- 32.Salkuyeh, D.K., Masoudi, M.: A new relaxed HSS preconditioner for saddle point problems. Numer. Algor. 74, 781–795 (2017)MathSciNetCrossRefGoogle Scholar
- 33.Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29, 752–773 (2007)MathSciNetCrossRefGoogle Scholar
- 34.Stoll, M., Wathen, A.: Combination preconditioning and the Bramble-Pasciak preconditioner. SIAM J. Matrix Anal. Appl. 30, 582–608 (2008)MathSciNetCrossRefGoogle Scholar
- 35.Zhang, J.-L., Gu, C.-Q.: A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. BIT Numer. Math. 56, 587–604 (2016)MathSciNetCrossRefGoogle Scholar
- 36.Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–50 (2001)MathSciNetCrossRefGoogle Scholar