The global convergence of the BFGS method under a modified Yuan-Wei-Lu line search technique

  • Alireza Hosseini DehmiryEmail author
Original Paper


This paper is focused on improving global convergence of the modified BFGS algorithm with Yuan-Wei-Lu line search formula. This improvement has been achieved by presenting a different line search approach and it is proved that the BFGS method with this line search converges globally if the function to be minimized has Lipschitz continuous gradients. The performance of the suggested algorithm is investigated via mathematical analysis and a simulation study.


Quasi-Newton method BFGS method Global convergence Unconstrained optimization 

Mathematics Subject Classification (2010)




  1. 1.
    Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)CrossRefGoogle Scholar
  2. 2.
    Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensic. Secur. 11(11), 2594–2608 (2016)CrossRefGoogle Scholar
  3. 3.
    Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA J. Appl. Math. 6(1), 76–90 (1970)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13 (3), 317–322 (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shanno, D.F.: Conditioning of quasi-newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Powell, M.J.: Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programm. 9(1), 53–72 (1976)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Andrei, N.: A double parameter scaled BFGS method for unconstrained optimization. J. Comput. Appl. Math. 332, 26–44 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Broyden, C.G., Dennis, J. Jr, Moré, J.J.: On the local and superlinear convergence of quasi-Newton methods. IMA J. Appl. Math. 12(3), 223–245 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Griewank, A., Toint, P.L.: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math. 39(3), 429–448 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dai, Y.-H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yuan, G., Wei, Z., Lu, X.: Global convergence of BFGS and PRP methods under a modified weak wolfe–powell line search. Appl. Math. Model. 47, 811–825 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yuan, G., Sheng, Z., Wang, B., Hu, W., Li, C.: The global convergence of a modified BFGS method for nonconvex functions. J. Comput. Appl. Math. 327, 274–294 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nocedal, J., Wright, S.J.: Numerical optimization 2nd (2006)Google Scholar
  16. 16.
    Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, D.H., Fukushima, M.: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems. SIAM J. Optim. 11(4), 1054–1064 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Yuan, Y., Sun, W., et al.: Theory and Methods of Optimization. Science Press of China, Beijing (1999)Google Scholar
  20. 20.
    Dolan, E.D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)CrossRefzbMATHGoogle Scholar
  22. 22.
    Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées, Revue franċaise D’informatique et de Recherche opérationnelle. Sér. Rouge 3(16), 35–43 (1969)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations