Fractional collocation boundary value methods for the second kind Volterra equations with weakly singular kernels

• Junjie Ma
• Huilan Liu
Original Paper

Abstract

We discuss the numerical solution to a class of weakly singular Volterra integral equations in this paper. Firstly, the fractional Lagrange interpolation is applied to deal with the singularity of the solution, and efficient fractional collocation boundary value methods are developed. Secondly, local convergence estimates are derived from examining the asymptotic property of the solution and the interpolation remainder. We find that the second kind Volterra integral equation with a weakly singular kernel can be efficiently solved on a uniform grid. Finally, several numerical examples are given to illustrate the performance of fractional collocation boundary value methods.

Keywords

Collocation Boundary value method Numerical integration Volterra integral equation Weakly singular

Notes

Funding information

This work is supported by NSF of China (No. 11761020), Scientific Research Foundation for Young Talents of Department of Education of Guizhou Province (No. 2016125), Major Scientific and Technological Special Project of Guizhou Province (No. 20183001), and Science and Technology Foundation of Guizhou Province (No. QKH[2017]5788).

References

1. 1.
Roberts, C.A., Lasseigne, D.G., Olmstead, W.E.: Volterra equations which model explosion in a diffusive medium. J. Integr. Eq. Appl. 5(4), 531–546 (1993)
2. 2.
Olmstead, W.E., Roberts, C.A.: Explosion in a diffusive strip due to a source with local and nonlocal features. Methods Appl. Anal. 3(3), 345–357 (1996)
3. 3.
Brunner, H.: Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge University Press, Cambridge (2017)
4. 4.
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)
5. 5.
Baumann, G., Stenger, F.: Fractional calculus and Sinc methods. Fract. Calc. Appl. Anal. 14(4), 568–622 (2011)
6. 6.
Diethelm, K., Ford, N.J.: Volterra integral equations and fractional calculus: do neighboring solutions intersect? J. Integr. Eq. Appl. 24(1), 25–37 (2012)
7. 7.
Esmaeili, S., Shamsi, M., Dehghan, M.: Numerical solution of fractional differential equations via a Volterra integral equation approach. Central Eur. J. Phys. 11(10), 1470–1481 (2013)Google Scholar
8. 8.
Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)
9. 9.
Diogo, T.: Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 229(2), 363–372 (2009)
10. 10.
Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithm. 65(4), 723–743 (2014)
11. 11.
Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)
12. 12.
Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012)
13. 13.
Huang, C., Stynes, M.: A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Adv. Comput. Math. 42(5), 1015–1030 (2016)
14. 14.
Brunner, H., Linz, P.: Analytical and numerical methods for Volterra equations. Math. Comput. 48(178), 841 (1987)Google Scholar
15. 15.
Berrut, J.P., Hosseini, S.A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36(1), A105–A123 (2014)
16. 16.
Li, M., Huang, C.: The linear barycentric rational quadrature method for auto-convolution Volterra integral equations. J. Sci. Comput. 78(1), 549–564 (2019)
17. 17.
Lubich, C. h.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41(163), 87–102 (1983)
18. 18.
Crisci, M.R., Jackiewicz, Z., Russo, E., Vecchio, A.: Global stability analysis of the Runge-Kutta methods for Volterra integral and integro-differential equations with degenerate kernels. Computing 45(4), 291–300 (1991)
19. 19.
Garrappa, R.: Order conditions for Volterra RungeC̈Kutta methods. Appl. Numer. Math. 60(5), 561–573 (2010)
20. 20.
van der Houwen, P.J., Riele, H.J.J.: Linear multistep methods for Volterra integral equations of the second kind. Queueing Systems (1982)Google Scholar
21. 21.
Lubich, C. h.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45(172), 463–469 (1985)
22. 22.
Garrappa, R.: On some explicit Adams multistep methods for fractional differential equations. J. Comput. Appl. Math. 229(2), 392–399 (2009)
23. 23.
Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)
24. 24.
Diogo, T., McKee, S., Tang, T.: Collocation methods for second-kind Volterra integral equations with weakly singular kernels. Proc. R. Soc. Edinb. 124, 199–210 (1994)
25. 25.
Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20(6), 1106–1119 (1983)
26. 26.
Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41(1), 364–381 (2003)
27. 27.
Rebelo, M., Diogo, T.: A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel. J. Comput. Appl. Math. 234(9), 2859–2869 (2010)
28. 28.
Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16(4), 874–891 (2013)
29. 29.
Ford, N.J., Morgado, M.L., Rebelo, M.: A nonpolynomial collocation method for fractional terminal value problems. J. Comput. Appl. Math. 275(1), 392–402 (2015)
30. 30.
Pedas, A., Vainikko, G.: Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations. Computing 73(3), 271–293 (2004)
31. 31.
Diogo, T., Lima, P.M., Pedas, A., Vainikko, G.: Smoothing transformation and spline collocation for weakly singular Volterra integro-differential equations. Appl. Numer. Math. 114, 63–76 (2017)
32. 32.
Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)
33. 33.
Pedas, A., Tamme, E., Vikerpuur, M.: Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 317, 1–16 (2017)
34. 34.
Cai, H., Chen, Y.: A fractional order collocation method for second kind Volterra integral equations with weakly singular kernels. J. Sci. Comput. 75(2), 970–992 (2018)
35. 35.
Brugnano, L., Trigiante, D.: Solving differential problems by multistep initial and boundary value methods. Cordon and Breach Science Publishers (1998)Google Scholar
36. 36.
Lopez, L., Trigiante, D.: Boundary value methods and BV-stability in the solution of initial value problems. Appl. Numer. Math. 11(1), 225–239 (1993)
37. 37.
Chen, H., Zhang, C.: Boundary value methods for Volterra integral and integro-differential equations. Appl. Math. Comput. 218(6), 2619–2630 (2011)
38. 38.
Ma, J., Xiang, S.: A collocation boundary value method for linear Volterra integral equations. J. Sci. Comput. 71(1), 1–20 (2017)
39. 39.
Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)
40. 40.
Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

Authors and Affiliations

• Junjie Ma
• 1
• 2
• Huilan Liu
• 1
• 2
1. 1.Guizhou Provincial Key Laboratory of Public Big DataGuizhou UniversityGuiyangPeople’s Republic of China
2. 2.School of Mathematics and StatisticsGuizhou UniversityGuiyangPeople’s Republic of China