Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay

  • 103 Accesses

  • 3 Citations

Abstract

This paper develops a well-conditioned Jacobi spectral Galerkin method for the analysis of Volterra-Hammerstein integral equations with weakly singular kernels and proportional delay. A recursive formula reduces the computational load when approximating the solutions of badly conditioned and complex non-linear algebraic systems. Additionally, the convergence properties of the method are also investigated. The spectral accuracy is obtained regardless of the discontinuities in the derivatives solution. Three examples illustrate the performance of the new approach.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Hambre, C.P.L.: Nonlinear heat transfer problem. J. Appl. Phys. 30(11), 1683–1688 (1959)

  2. 2.

    Chambré, P.L., Acrivos, A.: On chemical surface reactions in laminar boundary layer flows. J. Appl. Phys. 27(11), 1322–1328 (1956). https://doi.org/10.1063/1.1722258

  3. 3.

    Lighthill, M.J.: Contributions to the theory of heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. A 202(1070), 359–377 (1950)

  4. 4.

    Mann, W.R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9(2), 163–184 (1951). https://doi.org/10.1090/qam/42596

  5. 5.

    Padmavally, K.: On a non-linear integral equation. J. Math. Mech. 7(4), 533–555 (1958)

  6. 6.

    Moghaddam, B.P., Machado, J.A.T.: A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract. Calcul. Appl. Anal. 20(4), 1023–1042 (2017). https://doi.org/10.1515/fca-2017-0053

  7. 7.

    Mokhtary, P., Ghoreishi, F.: Convergence analysis of the operational tau method for abel-type volterra integral equations. Electron. Trans. Numer. Anal. 41, 289–305 (2014)

  8. 8.

    Cai, H., Chen, Y.: A fractional order collocation method for second kind V olterra integral equations with weakly singular kernels. J. Sci. Comput. 75(2), 970–992 (2017). https://doi.org/10.1007/s10915-017-0568-7

  9. 9.

    Pishbin, S., Ghoreishi, F., Hadizadeh, M.: The semi-explicit V olterra integral algebraic equations with weakly singular kernels: the numerical treatments. J. Comput. Appl. Math. 245, 121–132 (2013). https://doi.org/10.1016/j.cam.2012.12.012

  10. 10.

    Allaei, S.S., Diogo, T., Rebelo, M.: The J acobi collocation method for a class of nonlinear V olterra integral equations with weakly singular kernel. J. Sci. Comput. 69(2), 673–695 (2016)

  11. 11.

    Allaei, S.S., Diogo, T., Rebelo, M.: Analytical and computational methods for a class of nonlinear singular integral equations. Appl. Numer. Math. 114, 2–17 (2017)

  12. 12.

    Zhang, R., Zhu, B., Xie, H.: Spectral methods for weakly singular V olterra integral equations with pantograph delays. Front. Math. China 8(2), 281–299 (2013). https://doi.org/10.1007/s11464-013-0282-1

  13. 13.

    Ghoreishi, F., Hadizadeh, M.: Numerical computation of the T au approximation for the V olterra–H ammerstein integral equations. Numerical Algorithms 52(4), 541–559 (2009). https://doi.org/10.1007/s11075-009-9297-9

  14. 14.

    Mokhtary, P.: Operational Müntz-G alerkin approximation for A bel–H ammerstein integral equations of the second kind. Electron. Trans. Numer. Anal. 45, 183–200 (2016)

  15. 15.

    Zakeri, G. -A., Navab, M.: Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular V olterra integral equation. J. Comput. Phys. 229(18), 6548–6557 (2010). https://doi.org/10.1016/j.jcp.2010.05.010

  16. 16.

    Rebelo, M., Diogo, T.: A hybrid collocation method for a nonlinear V olterra integral equation with weakly singular kernel. J. Comput. Appl. Math. 234(9), 2859–2869 (2010). https://doi.org/10.1016/j.cam.2010.01.034

  17. 17.

    Quarteroni, A., Canuto, C., Hussaini, M.Y., Zang, T.A.: Spectral methods fundamentals in single domains. Springer Verlag 4(8), 16 (2006)

  18. 18.

    Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press. https://doi.org/10.1017/cbo9780511618352 (2007)

  19. 19.

    Shen, J., Tang, T., Wang, L.-L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011)

  20. 20.

    Chen, Y., Tang, T.: Convergence analysis of the J acobi spectral-collocation methods for V olterra integral equations with a weakly singular kernel. Math. Comput. 79(269), 147–147 (2010). https://doi.org/10.1090/s0025-5718-09-02269-8

  21. 21.

    Mokhtary, P.: High-order modified tau method for non-smooth solutions of A bel integral equations. Electron. Trans. Numer. Anal. 44, 462–471 (2015)

  22. 22.

    Li, X., Tang, T.: Convergence analysis of J acobi spectral collocation methods for A bel–V olterra integral equations of second kind. Front. Math. China 7(1), 69–84 (2012). https://doi.org/10.1007/s11464-012-0170-0

  23. 23.

    Shen, J., Sheng, C., Wang, Z.: Generalized J acobi spectral-G alerkin method for nonlinear V olterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015). https://doi.org/10.4208/jms.v48n4.15.01

  24. 24.

    Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral G alerkin methods for V olterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012). https://doi.org/10.1007/s10915-012-9577-8

  25. 25.

    Rivlin, T.J.: An Introduction to the Approximation of Functions. Courier Corporation (2003)

  26. 26.

    Diogo, T., Ma, J., Rebelo, M.: Fully discretized collocation methods for nonlinear singular V olterra integral equations. J. Comput. Appl. Math. 247, 84–101 (2013). https://doi.org/10.1016/j.cam.2013.01.002

Download references

Author information

Correspondence to B. P. Moghaddam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokhtary, P., Moghaddam, B.P., Lopes, A.M. et al. A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay. Numer Algor 83, 987–1006 (2020). https://doi.org/10.1007/s11075-019-00712-y

Download citation

Keywords

  • Volterra integral equation
  • Weakly singular kernel
  • Proportional delay
  • Jacobi spectral Galerkin method
  • Regularization
  • Exponential convergence

Mathematics Subject Classification (2010)

  • 45D05
  • 65R20
  • 65L60
  • 65F22