Advertisement

Unconditional optimal error estimate of the projection/Lagrange-Galerkin finite element method for the Boussinesq equations

  • Zhiyong SiEmail author
  • Yanfang Lei
  • Zhang Tong
Original Paper
  • 4 Downloads

Abstract

This paper provides an unconditional optimal convergence of a fractional-step method for solving the Boussinesq equations. In this method, the convection is treated by the Lagrange-Galerkin technique, whereas the diffusion and the incompressibility are treated by the projection method. There are lots of authors who worked on this method, and some authors gave the error estimate of this method. But, to our best knowledge, the error estimate for this method is under certain time-step restrictions. In this paper, we prove that the methods are stable almost unconditionally, i.e., when τ and h are smaller than a given constant. The basic idea of our analysis is splitting the error function into three terms, one term between the finite element solution and the projection, the other term between the projection and the time-discrete solution, the third term between the time-discrete solution and the exact solution, and giving the error estimates for each term respectively. Then, we obtain the optimal error estimates in L2 and H1-norm for the velocity and L2-norm for the pressure. In order to show the efficiency of our method, some numerical results are presented.

Keywords

Unconditional optimal error estimate Projection finite element method Time-dependent Boussinesq problems Lagrange-Galerkin method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

References

  1. 1.
    Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adams, R.A.: Sobolev Space Pure and Applied Mathematics, vol. 65. Academic press, New York (1975)Google Scholar
  3. 3.
    Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 32, 439–464 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal 32(2), 404–424 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bermejo, R., del Sastre, P., Saavedra, L.: A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations. SIAM J Numer Anal 50, 3084–3109 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bermejo, R., Saavedra, L.: Modified Lagrange-Galerkin methods of first and second order in time for convection-diffusion problems. Numer. Math. 120, 601–638 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boland, J., Layton, W.: Error analysis for finite element method for natural convection problems. Numer. Funct. Anal. Optimiz. 11, 449–483 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boukir, K., Maday, Y., MéTivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 116, 211–218 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higher-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Math. Fluids 25, 1421–1454 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Boukir, K., Nitrosso, B., Maury, B.: A characteristics-ALE method for variable domain Navier-Stokes equations. In: Wrobel, L. C., Sarler, B., Brebbia, C. A. (eds.) Computational Modelling of Free and Moving Boundary Problems III, pp 57–65. Comput. Mech. Publ, Southampton/Boston (1995)Google Scholar
  11. 11.
    Buscaglia, G.C., Dari, E.A.: Implementation of the Lagrange-Galerkin method for the incompressible for the incompressible Navier-Stokes equations. Int. J. Numer. Methods fluids 15, 23–36 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, Z.X.: Characteristic mixed discontinuous finite element methods for advection-dominated diifusion problems. Comput. Methods Appl. Mech. Engrg. 191, 2509–2538 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, Z.X., Ewing, R.E., Jiang, Q., Spagnuolo, A.M.: Error analysis for characteristics-based methods for degenerate parabolic problems. SIAM J. Numer. Anal. 40(4), 1491–1515 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Douglas, J. Jr., Pereira, F., Yeh, L.M.: A locally conservative Eulerian-Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4, 1–40 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combing the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ewing, R.E., Russell, T.F.: Multistep Galerkin method along characteristics for convection-diffusion problems. In: Vichnevestsky, R., Steoleman, R.S. (eds.) Adv. Comput. Methods P.D.E., pp 28–36 (1981)Google Scholar
  18. 18.
    Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ewing, R., Wang, H.: Hennart Eulerian-Lagrangian localized adjoint methods for variable-coefficient advective-diffusive-reactive equations in groundwater contaminant transport. In: Gomez, S, Hennart, J.-P. (eds.) Advances in optimization and numerical analysis, pp 185–205. Springer, Netherlands (1994)Google Scholar
  20. 20.
    Ewing, R., Wang, H.: An optimal-order estimate for Eulerian/Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garder, A.O., Peaceman, D.W., Pozzi, A.L.: Numerical calculations of multidimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4, 26–36 (1964)CrossRefGoogle Scholar
  22. 22.
    Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pure Appl. 84, 279–330 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1987)zbMATHGoogle Scholar
  24. 24.
    Guzman, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math Comp. 81, 1879–1902 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 171–186 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    He, Y.N.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74, 1201–1216 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 1568–1576 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kim, D., Choi, Y.: Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation. Int. J. Thermal Sci. 48, 1247–1258 (2009)CrossRefGoogle Scholar
  31. 31.
    Luo, Z., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Meth. Fluids 60, 409–436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Modeling 10, 622–633 (2013)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Nochetto, R., Pyo, J.H.: The finite element Gauge-Uzawa method. Part II: the Boussinesq equations. Mathematical Models and Methods in Applied Sciences 16(10), 1599–1626 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Pironnequ, O.: On the transport-diffusion algorithm and it’s applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Si, Z.Y.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. Numer. Algor. 59(2), 271–300 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Si, Z.Y., He, Y.N.: A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing 89(1–2), 1–25 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Si, Z.Y., He, Y.N.: A defect-correction mixed finite element method for stationary conduction-convection problems, Math. Prob. Engine., 2011, Article ID 370192, 28 pages,.  https://doi.org/10.1155/2011/370192
  40. 40.
    Si, Z.Y., He, Y.N., Wang, K.: A defect-correction method for unsteady conduction convection problems I: spatial discretization. Sci. China. Math. 54, 185–204 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Si, Z.Y., He, Y.N., Zhang, T.: A defect-correction method for unsteady conduction-convection problems II: time discretization. J. Comput. Appl. Math. 236 (9), 2553–2573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problem. Finite Elem. Anal Des. 47, 175–183 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math.  https://doi.org/10.1007/s00211-015-0767-9 (2015)
  44. 44.
    Si, Z.Y., Zhang, T., Wang, K.: A Newton iterative scheme mixed finite element method for stationary conduction-convection problems. Int. J. Comput. Fluid Dyn. 24, 135–141 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Sun, W.W., Sun, Z.Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceHenan Polytechnic UniversityJiaozuoPeople’s Republic of China
  2. 2.School of Mathematics and Computational ScienceXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.School of Information Science and TechnologyZhengzhou Normal UniversityZhengzhouPeople’s Republic of China

Personalised recommendations