Advertisement

Modulus-based matrix splitting methods for horizontal linear complementarity problems

  • Francesco MezzadriEmail author
  • Emanuele Galligani
Original Paper

Abstract

In this paper, we extend modulus-based matrix splitting iteration methods to horizontal linear complementarity problems. We consider both standard and accelerated methods and analyze their convergence. In this context, we also generalize existing results on modulus-based matrix splitting iteration methods for (non-horizontal) linear complementarity problems. Lastly, we analyze the proposed methods by numerical experiments involving both symmetric and non-symmetric matrices.

Keywords

Horizontal complementarity problems Modulus-based methods Matrix splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors desire to thank the anonymous referees for the valuable comments and suggestions.

References

  1. 1.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Classics in Applied Mathematics. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y.: On the convergence of a class on infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optimiz. 4(1), 208–227 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Mezzadri, F., Galligani, E.: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo 55(1) (2018)Google Scholar
  4. 4.
    Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97–100 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems. Linear Algebra Appl. 223/224, 717–729 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ralph, D.: A stable homotopy approach to horizontal linear complementarity problems. Control Cybern. 31, 575–600 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gao, X., Wang, J.: Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Int. Sys. 7(4), 724–732 (2014)CrossRefGoogle Scholar
  8. 8.
    Schäfer, U.: Verification methods for the horizontal linear complementarity problem. In: PAMM - Proceedings in Applied Mathematics and Mechanics, vol. 8, pp 10,799–10,800 (2008)Google Scholar
  9. 9.
    Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    van Bokhoven, W.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)Google Scholar
  12. 12.
    Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)zbMATHGoogle Scholar
  13. 13.
    Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, L.-L., Ren Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zheng, N., Yin, J.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algorithms 64, 245–262 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zheng, H., Li, W., Vong, S.: A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer. Algorithms 74(1), 137–152 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24, e2105:1-15 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, R., Wang, Y., Yin, J.F.: On the convergence of two-step modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems with H +-matrices. Numer. Math. - Theory Me. 11, 128–139 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ke, Y., Ma, C.: On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Appl. Math. Comput. 243, 413–418 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Xia, Z., Li, C.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems. Appl. Math. Comput. 271, 34–42 (2015)MathSciNetGoogle Scholar
  24. 24.
    Ma, C., Huang, N.: Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems. Appl. Numer. Math. 108, 116–124 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zheng, H.: Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of h-matrices. Calcolo 54, 1481–1490 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345–356 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sznajder, R., Gowda, M.S.: Generalizations of P 0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    Horn, R., Johnson, C.: Matrix Analysis. 2nd edn. Cambridge University Press, Cambridge (2013)Google Scholar
  30. 30.
    Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12(3), 382–400 (1962)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic, New York (1970)Google Scholar
  33. 33.
    Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Computers Math. Applic. 32(12), 51–76 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ortega, J.M.: Numerical Analysis: A Second Course. Computer Science and Applied Mathematics. Academic Press, New York and London (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations