Advertisement

The performance of the N-body integrator SSS

  • P. W. SharpEmail author
Original Paper
  • 9 Downloads

Abstract

The integrator SSS performs accurate N-body simulations of the Solar System when there is a mix of massive bodies and test particles. The orbital motion of all bodies at all times is integrated using a 12-10 explicit Runge-Kutta Nyström (RKN) pair. The test particles are divided into sets and each set integrated on a different processor. The explicit RKN pair uses an order 12 interpolant for the position and velocity when checking for collisions. We report on two significant improvements to SSS. The first improvement reduced the local round-off error in interpolated values by approximately four orders of magnitude, permitting more accurate modelling of collisions. The technique used to reduce the round-off error can be applied to other high-order interpolants. The second improvement is hand optimization of the implementation of SSS. This optimization increased the speed of SSS by approximately 60%, permitting more accurate modelling through the use of more test particles. We also present a summary of the numerical performance of SSS on a simulation of the Sun, the planets Earth to Neptune, and 500,000 test particles over 100 million years.

Keywords

Planetary dynamics N-body simulations Integrator Performance Round-off error Hand optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author thanks the two referees for their careful reading of the paper and their suggestions on how to improve it. The author acknowledges the contribution of the NeSI high-performance computing facilities and the staff at the Centre for eResearch at the University of Auckland. New Zealand’s national facilities are provided by the New Zealand eScience Infrastructure (NeSI) and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation and Employment’s Infrastructure programme. http://www.nesi.org.nz. The author also acknowledges the use of the computational servers in the Department of Mathematics at the University of Auckland.

References

  1. 1.
    Baker, T., Dormand, J., Gilmore, J., Prince, P.: Continuous approximation with embedded Runge-Kutta methods. Appl. Numer. Math. 22 (1–3), 51 – 62 (1996).  https://doi.org/10.1016/S0168-9274(96)00025-6. http://www.sciencedirect.com/science/article/pii/S0168927496000256. Special Issue Celebrating the Centenary of Runge-Kutta MethodsMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Batygin, K., Brown, M.E.: Early dynamical evolution of the solar system: pinning down the initial conditions of the Nice model. Astrop. J. 716, 1323–1331 (2010).  https://doi.org/10.1088/0004-637X/716/2/1323 CrossRefGoogle Scholar
  3. 3.
    Brasil, P.I.O., Nesvorný, D., Gomes, R.S.: Dynamical implantation of objects in the Kuiper Belt. Astron. J. 148, 56 (2014).  https://doi.org/10.1088/0004-6256/148/3/56 CrossRefGoogle Scholar
  4. 4.
    Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02379.x CrossRefGoogle Scholar
  5. 5.
    Dormand, J.R., El-Mikkaway, M.E.A., Prince, P.J.: High-order embedded Runge-Kutta-Nyström formuale. IMA J. Num. Anal. 7, 423–430 (1987)CrossRefzbMATHGoogle Scholar
  6. 6.
    Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).  https://doi.org/10.1086/300541 CrossRefGoogle Scholar
  7. 7.
    Grazier, K.R., Castillo-Rogez, J.C., Horner, J.: It’s complicated: a big data approach to exploring planetesimal evolution in the presence of Jovian planets. Astron. J. 156, 232 (2018).  https://doi.org/10.3847/1538-3881/aae095 CrossRefGoogle Scholar
  8. 8.
    Grazier, K.R., Newman, W.I., Sharp, P.W.: A multirate Störmer algorithm for close encounters. Astron. J. 145(4), 112 (2013). http://stacks.iop.org/1538-3881/145/i=4/a=112 CrossRefGoogle Scholar
  9. 9.
    Grimm, S.L., Stadel, J.G.: The GENGA code: gravitational encounters in n-body simulations with GPU acceleration. Astrop. J. 796, 23 (2014).  https://doi.org/10.1088/0004-637X/796/1/23 CrossRefGoogle Scholar
  10. 10.
    Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math. 25(4), 383–400 (1975).  https://doi.org/10.1007/BF01396335 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Horner, J., Jones, B.: Jupiter – friend or foe? I: the asteroids. Int. J. Astrobiol. 7, 251–261 (2008).  https://doi.org/10.1017/S1473550408004187. http://journals.cambridge.org/article_S1473550408004187 CrossRefGoogle Scholar
  12. 12.
    Horner, J., Jones, B.: Jupiter – friend or foe? II: the centaurs. Int. J. Astrobiol. 8, 75–80 (2009).  https://doi.org/10.1017/S1473550408004357. http://journals.cambridge.org/article_S1473550408004357 CrossRefGoogle Scholar
  13. 13.
    Horner, J., Jones, B., Chambers, J.: Jupiter – friend or foe? III: the Oort cloud comets. Int. J. Astrobiol. 9, 1–10 (2010).  https://doi.org/10.1017/S1473550409990346. http://journals.cambridge.org/article_S1473550409990346 CrossRefGoogle Scholar
  14. 14.
    Horner, J., Jones, B.W.: Jupiter - friend or foe? IV: the influence of orbital eccentricity and inclination. Int. J. Astrobiol. 11, 147–156 (2012).  https://doi.org/10.1017/S1473550412000043 CrossRefGoogle Scholar
  15. 15.
    Izidoro, A., Raymond, S.N., Morbidelli, A., Winter, O.C.: Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. Roy. Ast. Soc. 453, 3619–3634 (2015).  https://doi.org/10.1093/mnras/stv1835 CrossRefGoogle Scholar
  16. 16.
    Kaufmann, D.: Swifter, http://www.boulder.swri.edu/swifter/ (2005)
  17. 17.
    Levison, H.F., Duncan, M.J.: Symplectically integrating close encounters with the Sun. Astron. J. 120, 2117–2123 (2000).  https://doi.org/10.1086/301553 CrossRefGoogle Scholar
  18. 18.
    Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorný, D., Gomes, R.: Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142(5), 152 (2011). http://stacks.iop.org/1538-3881/142/i=5/a=152 CrossRefGoogle Scholar
  19. 19.
    Minton, D.A., Malhotra, R.: Dynamical erosion of the asteroid belt and implications for large impacts in the inner solar system. Icarus 207(2), 744–757 (2010).  https://doi.org/10.1016/j.icarus.2009.12.008. http://www.sciencedirect.com/science/article/pii/S0019103509004953 CrossRefGoogle Scholar
  20. 20.
    Moore, A., Quillen, A.: QYMSYM: a GPU-accelerated hybrid symplectic integrator that permits close encounters. New Astron. 16(7), 445–455 (2011).  https://doi.org/10.1016/j.newast.2011.03.009. http://www.sciencedirect.com/science/article/pii/S1384107611000303 CrossRefGoogle Scholar
  21. 21.
    Nesvorný, D., Vokrouhlický, D., Morbidelli, A.: Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013).  https://doi.org/10.1088/0004-637X/768/1/45 CrossRefGoogle Scholar
  22. 22.
    Raymond, S.N., Armitage, P.J., Moro-Martín, A., Booth, M., Wyatt, M.C., Armstrong, J.C., Mandell, A.M., Selsis, F., West, A.A.: Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties. A & A 541, A11 (2012).  https://doi.org/10.1051/0004-6361/201117049 CrossRefGoogle Scholar
  23. 23.
    Roy, A.: Orbital Motion, 3rd edn. Taylor & Francis, New York (1988). https://books.google.co.nz/books?id=yLGqnQAACAAJ zbMATHGoogle Scholar
  24. 24.
    Sharp, P.W.: N-body simulations: the performance of some integrators. ACM Trans. Math. Softw. 32, 375–395 (2006).  https://doi.org/10.1145/1163641.1163642 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sharp, P.W., Newman, W.I.: A multirate variable-timestep algorithm for n-body solar system simulations with collisions. Astron. J. 151(3), 64 (2016). http://stacks.iop.org/1538-3881/151/i=3/a= 64 CrossRefGoogle Scholar
  26. 26.
    Tsitouras, C.: A tenth order symplectic Runge-Kutta-Nyström method. Celestial Mech. Dyn. Astron. 74, 223–230 (1999).  https://doi.org/10.1023/A:1008346516048 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, J.H., Brasser, R.: An Oort cloud origin of the Halley-type comets. Astron. Astrop. 563, A122 (2014).  https://doi.org/10.1051/0004-6361/201322508 CrossRefGoogle Scholar
  28. 28.
    Wu, X., Wang, B.: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations.  https://doi.org/10.1007/978-981-10-9004-2 (2018)
  29. 29.
    Wu, X., Wang, B., Liu, K., Zhao, H.: ERKN methods for long-term integration of multidimensional orbital problems. Appl. Math. Model. 37, 2327–2336 (2013).  https://doi.org/10.1016/j.apm.2012.05.021 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wu, X., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer Publishing Company, Incorporated (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe University of AucklandAucklandNew Zealand

Personalised recommendations