Advertisement

Decomposition into subspaces preconditioning: abstract framework

  • Jakub Hrnčíř
  • Ivana PultarováEmail author
  • Zdeněk Strakoš
Original Paper
  • 19 Downloads

Abstract

Operator preconditioning based on decomposition into subspaces has been developed in early 90’s in the works of Nepomnyaschikh, Matsokin, Oswald, Griebel, Dahmen, Kunoth, Rüde, Xu, and others, with inspiration from particular applications, e.g., to fictitious domains, additive Schwarz methods, multilevel methods etc. Our paper presents a revisited general additive splitting-based preconditioning scheme which is not connected to any particular preconditioning method. We primarily work with infinite-dimensional spaces. Motivated by the work of Faber, Manteuffel, and Parter published in 1990, we derive spectral and norm lower and upper bounds for the resulting preconditioned operator. The bounds depend on three pairs of constants which can be estimated independently in practice. We subsequently describe a nontrivial general relationship between the infinite-dimensional results and their finite-dimensional analogs valid for the Galerkin discretization. The presented abstract framework is universal and easily applicable to specific approaches, which is illustrated on several examples.

Keywords

Operator preconditioning Decomposition into infinite-dimensional subspaces Stable splitting Norm and spectral equivalence of operators Additive Schwarz methods Multilevel methods Separate displacement preconditioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Radim Blaheta for pointing out the separate displacement method in elasticity. The authors thank Miroslav Bulíček, Vít Dolejší, Josef Málek, Endre Süli, and Jan Zeman for their careful reading the manuscript and for many helpful suggestions and comments.

Funding information

The work was supported by the Grant Agency of the Czech Republic under the contract no. 17-04150J and by the Charles University, project GA UK no. 172915.

References

  1. 1.
    Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning discrete approximations of the Reissner-Mindlin plate model. RAIRO Modél. Math. Anal. Numér. 31(4), 517–557 (1997)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in H(div) and applications. Math. Comp. 66(219), 957–984 (1997)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47, 281–354 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in Applied Mathematics, 3rd edn., vol. 39. Springer, Dordrecht (2009)Google Scholar
  5. 5.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  6. 6.
    Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equations of elasticity. Comput. Meth. Appl. Mech. Engrg. 15, 241–258 (1978)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Axelsson, O., Karátson, J.: Equivalent operator preconditioning for elliptic problems. Numer. Algorithms 50(3), 297–380 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20, 1807–1830 (1999)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Axelsson, O., Vassilevski, P.S.: Algebraic multilevel preconditioning methods. I. Numer. Math. 56(2-3), 157–177 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bespalov, A., Powell, C.E., Silvester, D.: Energy norm a posteriori error estimation for parametric operator equations. SIAM J. Sci. Comput. 36, A339–A363 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Blaheta, R.: Displacement decomposition–incomplete factorization preconditioning techniques for linear elasticity problems. Numerical Linear Algebra with Applications 1(2), 107–128 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 55(191), 1–22 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bramble, J.H., Pasciak, J.E., Wang, J.P., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp. 57(195), 23–45 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  15. 15.
    Conway, J.B.: A Course in Functional Analysis Graduate Texts in Mathematics, 2nd edn, vol. 96. Springer, New York (1990)Google Scholar
  16. 16.
    Crowder, A., Powell, C.E.: CBS constants and their role in error estimation for stochastic Galerkin finite element methods. J. Sci. Comput. 77(2), 1030–1054 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63(3), 315–344 (1992)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, vol. 7. Interscience Publishers, Inc., New York (1958)zbMATHGoogle Scholar
  19. 19.
    D’Yakonov, E.G.: On an iterative method for the solution of a system of finite-difference equations. Dokl. Akad. Nauk 138, 522–526 (1961)Google Scholar
  20. 20.
    D’Yakonov, E.G.: The construction of iterative methods based on the use of spectrally equivalent operators. U.S.S.R Comput. Math. and Math. Phys. 6(1), 14–46 (1966)zbMATHGoogle Scholar
  21. 21.
    Eijkhout, V., Vassilevski, P.: The role of the strengthened C.B.S.-inequality in multi-level methods. SIAM Rev. 33, 405–419 (1991)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Faber, V., Manteuffel, T.A., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11(2), 109–163 (1990)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115 (3-4), 365–385 (1994)MathSciNetGoogle Scholar
  24. 24.
    Friedman, A.: Foundations of Modern Analysis. Dover Publications, New York (1982)zbMATHGoogle Scholar
  25. 25.
    Gander, M., Halpern, L., Santugini-Repiquet, K.: Continuous analysis of the additive Schwarz method: a stable decomposition in H 1. ESAIM Mathematical Modelling and Numerical Analysis 49(3), 365–385 (2011)Google Scholar
  26. 26.
    Gergelits, T., Mardal, K.A., Nielsen, B.F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator. arXiv:180903790G (2018)
  27. 27.
    Gergelits, T., Strakoš, Z.: Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer. Algorithms 65(4), 759–782 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gunn, J.E.: The numerical solution of ∇⋅ au = f by a semi-explicit alternating-direction iterative technique. Numer. Math. 6, 181–184 (1964)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Gunn, J.E.: The solution of elliptic difference equations by semi-explicit iterative techniques. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2, 24–45 (1965)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52(5), 699–706 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hrnčíř, J., Strakoš, Z.: Norm and spectral equivalence in operator preconditioning. In: Preparation (2018)Google Scholar
  33. 33.
    Keilegavlen, E., Nordbotten, J.M.: Inexact linear solvers for control volume discretizations in porous media. Comput. Geosci. 19(1), 159–176 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kirby, R.C.: From functional analysis to iterative methods. SIAM Rev. 52(2), 269–293 (2010)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Klawonn, A.: An optimal preconditioner for a class of saddle point problems with a penalty term. Part II: general theory. Tech. rep., 14/95. Westfälische Wilhelms-Universität Münster, Germany (1995)Google Scholar
  36. 36.
    Klawonn, A.: Preconditioners for indefinite problems. Ph.D. thesis, Universität Münster (1996)zbMATHGoogle Scholar
  37. 37.
    Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Vol. 1. Metric and Normed Spaces. Graylock Press, Rochester, N.Y. Translated from the first Russian edition by Leo F. Boron (1957)Google Scholar
  38. 38.
    Kornhuber, R., Yserentant, H.: Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model Simul. 14(3), 1017–1036 (2016)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Kraus, J., Margenov, S.: Robust Algebraic Multilevel Methods and Algorithms Radon Series on Computational and Applied Mathematics, vol. 5. Walter de Gruyter GmbH & Co. KG, Berlin (2009)zbMATHGoogle Scholar
  40. 40.
    Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  41. 41.
    Málek, J., Strakoš, Z.: Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs SIAM Spotlights, vol. 1. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015)zbMATHGoogle Scholar
  42. 42.
    Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1–40 (2011)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Matsokin, A.M., Nepomnyaschikh, S.V.: Schwarz alternating method in a subspace. Sov. Math. (Izv. vuz.) 29, 78–84 (1985)Google Scholar
  44. 44.
    Napov, A., Notay, Y.: Algebraic multigrid for moderate order finite elements. SIAM J. Sci. Comput. 36(4), A1678–A1707 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction Studies in Applied Mechanics, vol. 3. Elsevier Scientific Publishing Co., Amsterdam (1980)Google Scholar
  46. 46.
    Nepomnyaschikh, S.V.: Mesh theorems on traces, normalization of function traces and their inversion. Sov. J. Numer. Anal. Math. Modelling 6, 1–25 (1991)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Nepomnyaschikh, S.V.: Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains. Sov. J. Numer. Anal. Math. Modelling 6, 151–168 (1991)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Nepomnyaschikh, S.V.: Decomposition and fictitious domain methods for elliptic boundary value problems. In: Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S., Voigt, R. (eds.) 5Th Conference on Domain Decomposition Methods for PDE, pp 62–72. SIAM Publ., Philadelphia (1992)Google Scholar
  49. 49.
    Nielsen, B.F., Tveito, A., Hackbusch, W.: Preconditioning by inverting the Laplacian: an analysis of the eigenvalues. IMA J. Numer. Anal. 29(1), 24–42 (2009)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Oswald, P.: On function spaces related to finite element approximation theory. Z. Anal. Anwendungen 9, 43–64 (1990)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Oswald, P.: Norm equivalencies and multilevel Schwarz preconditioning for variational problems. Forschungsergebnisse Math/92/01, Friedrich Schiller Universität Jena (1992)Google Scholar
  52. 52.
    Oswald, P.: Stable splittings of Sobolev spaces and fast solution of variational problems. Forschungsergebnisse Math/92/05, Friedrich Schiller Universität Jena (1992)Google Scholar
  53. 53.
    Oswald, P.: Multilevel Finite Element Approximation, Theory and Applications. Teubner Skripten Zur Numerik. B. G. Teubner, Stuttgart, Stuttgart (1994)Google Scholar
  54. 54.
    Oswald, P.: Stable subspace splittings for Sobolev spaces and domain decomposition algorithms. In: Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), Contemp. Math., vol. 180, pp 87–98. Amer. Math. Soc., Providence (1994)Google Scholar
  55. 55.
    Pultarová, I.: Block and multilevel preconditioning for stochastic Galerkin problems with lognormally distributed parameters and tensor product polynomials. J. Uncertain. Quantif. 7(5), 441–462 (2017)MathSciNetGoogle Scholar
  56. 56.
    Rüde, U.: Mathematical and Computational Techniques for Multilevel Adaptive Methods Frontiers in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1993)Google Scholar
  57. 57.
    Sogn, J., Zulehner, W.: Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems. arXiv:1708.09245v1 [math.NA] (2017)
  58. 58.
    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems, Finite and Boundary Elements. Springer science + bussiness media, LLC, New York (2008)zbMATHGoogle Scholar
  59. 59.
    Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer, Berlin (2005)zbMATHGoogle Scholar
  60. 60.
    Vassilevski, P.S.: Multilevel Block Factorization Preconditioners. Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York (2008)zbMATHGoogle Scholar
  61. 61.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Xu, J.: An introduction to multilevel methods. Wavelets, Multilevel Methods and Elliptic PDEs, M. Ainsworth, J. Levesley, M. Marletta, and W. Light, eds. pp 213–299 (1997)Google Scholar
  63. 63.
    Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert spaces. J. Am. Math. Soc. 15(3), 573–597 (2002)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Yserentant, H.: On the multilevel splitting of finite element spaces. Numer. Math. 49(4), 379–412 (1986)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numerica 2, 285–326 (1993)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Zulehner, W.: Nonstandard norms and robust estimates for saddle point problems. SIAM. J. Matrix Anal. Appl. 32(2), 536–560 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic
  2. 2.Department of Mathematics, Faculty of Civil EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations