Advertisement

Differentiation matrices for univariate polynomials

  • Amirhossein Amiraslani
  • Robert M. CorlessEmail author
  • Madhusoodan Gunasingam
Original Paper
  • 8 Downloads

Abstract

Differentiation matrices are in wide use in numerical algorithms, although usually studied in an ad hoc manner. We collect here in this review paper elementary properties of differentiation matrices for univariate polynomials expressed in various bases, including orthogonal polynomial bases and non-degree-graded bases such as Bernstein bases and Lagrange and Hermite interpolational bases. We give new explicit formulations, and new explicit formulations for the pseudo-inverses which help to understand antidifferentiation, of many of these matrices. We also give the unique Jordan form for these (nilpotent) matrices and a new unified formula for the transformation matrix.

Keywords

Differentiation matrices Polynomial bases Lagrange interpolational bases Hermite interpolational bases Bernstein bases Orthogonal polynomial bases Newton bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank André Weideman and a referee for very helpful comments on an earlier draft. We also thank ORCCA and the Rotman Institute of Philosophy.

Funding information

This work was supported by a Summer Undergraduate NSERC Scholarship for the third author. The second author was supported by an NSERC Discovery Grant.

References

  1. 1.
    Amiraslani, A., Fassbender, H., Shayanfar, N.: Birkhoff polynomial basis. Springer Proc. Math. Stat. 192, 1–25 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berrut, J.-P., Trefethen, L.N: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 509–514 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boyd, J.P: Chebyshev and Fourier Spectral Methods. Courier Corporation (2001)Google Scholar
  4. 4.
    Bronstein, M.: Symbolic Integration I: Transcendental Functions, vol. 1. Springer Science & Business Media (2006)Google Scholar
  5. 5.
    Butcher, J.C., Corless, R.M., Gonzalez-Vega, L., Shakoori, A.: Polynomial algebra for Birkhoff interpolants. Numer. Algor. 56(3), 319–347 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carnicer, J.M., Khiar, Y., Peña, J.M.: Optimal stability of the Lagrange formula and conditioning of the Newton formula. Journal of Approximation Theory (2017)Google Scholar
  7. 7.
    Chelyshkov, V.S.: Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal. 25, 17–26 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods. Springer (2013)Google Scholar
  9. 9.
    Corless, R.M., Trivedi, J.A.: Levin integration using differentiation matrices. In preparation (2018)Google Scholar
  10. 10.
    Corless, R.M., Watt, S.M.: Bernstein bases are optimal, but, sometimes, Lagrange bases are better. In: Proceedings of SYNASC, Timisoara, pp 141–153. MITRON Press (2004)Google Scholar
  11. 11.
    Davis, P.J.: Interpolation and Approximation. Blaisdell (1963)Google Scholar
  12. 12.
    Diekema, E., Koornwinder, T.H.: Differentiation by integration using orthogonal polynomials, a survey. J. Approx. Theory 164(5), 637–667 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Don, W.S., Solomonoff, A.: Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique. SIAM J. Sci. Comput. 18(4), 1040–1055 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Embree, M.: Pseudospectra. In: Hogben, L (ed.) Handbook of Linear Algebra, chapter 23. Chapman and Hall/CRC (2013)Google Scholar
  15. 15.
    Farin, G.: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. Elsevier (2014)Google Scholar
  16. 16.
    Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65(216), 1553–1566 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fitt, A.D., Hoare, G.T.Q.: The closed-form integration of arbitrary functions. Math. Gaz. 77(479), 227–236 (1993)CrossRefGoogle Scholar
  18. 18.
    Gottlieb, D., Lustman, L.: The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20(5), 909–921 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Henrici, P.: Elements of Numerical Analysis. Wiley (1964)Google Scholar
  20. 20.
    Iserles, A., Nørsett, S., Olver, S.: Highly oscillatory quadrature: The story so far. Numer. Math. Adv. Appl., 97–118 (2006)Google Scholar
  21. 21.
    Knuth, D.E.: Two notes on notation. Am. Math. Mon. 99(5), 403–422 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lorentz, G., Jetter, K., Riemenschneider, S.D.: Birkhoff Interpolation. Addison Wesley Publishing Company (1983)Google Scholar
  24. 24.
    Olver, S., Townsend, A.: A fast and well-conditioned spectral method. SIAM Rev. 55(3), 462–489 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rebillard, L.: Rational approximation in the complex plane using a τ-method and computer algebra. Numer. Algor. 16(2), 187–208 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reddy, S.C., Weideman, J.A.C.: The accuracy of the Chebyshev differencing method for analytic functions. SIAM J. Numer. Anal. 42(5), 2176–2187 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sadiq, B., Viswanath, D.: Barycentric Hermite interpolation. SIAM J. Sci. Comput. 35(3), A1254–A1270 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Schneider, C., Werner, W.: Hermite interpolation: the barycentric approach. Computing 46(1), 35–51 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Trefethen, L.N.: Spectral Methods in MATLAB. SIAM (2000)Google Scholar
  30. 30.
    Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM (2013)Google Scholar
  31. 31.
    Weideman, J.A.C., Reddy, S.C.: A matlab differentiation matrix suite. ACM Trans. Math. Softw. (TOMS) 26(4), 466–470 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Weideman, J.A.C., Trefethen, Lloyd N: The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279–1298 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yang, C.: Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 134, 132–144 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.STEM DepartmentThe University of Hawaii-Maui CollegeKahuluiUSA
  2. 2.Faculty of MathematicsK. N. Toosi University of TechnologyTehranIran
  3. 3.The Ontario Research Center for Computer AlgebraThe University of Western OntarioLondonCanada
  4. 4.The School of Mathematical and Statistical SciencesThe University of Western OntarioLondonCanada

Personalised recommendations